ELECTRICAL CHARACTERISTICS ### INPUT ($T_A = 0$ °C to 70°C unless otherwise specified) | Parameter | Symbol | Test Condition | Min | Тур.* | Max | Unit | |----------------------------|--------------------------------|---|-----|-------|-----|-------| | Forward Voltage | $V_{\rm F}$ | $I_F = 16 \text{mA}, T_A = 25 ^{\circ}\text{C}$ | | 1.45 | 1.8 | V | | Reverse Voltage | V_R | $I_R = 10 \mu A$ | 5.0 | | | V | | Temperature
Coefficient | V _F /T _A | $I_F = 16mA$ | | -1.9 | | mV/°C | | Input Capacitance | C _{IN} | $V_F = 0V$, $f = 1MHz$ | | 60 | | pF | ### **OUTPUT** ($T_A = 0$ °C to 70°C unless otherwise specified) | Parameter | Symbol | Test Condition | Min | Тур.* | Max | Unit | |------------------------------|-------------------|---|-----|-------|-----|------| | Logic High Output
Current | I_{OH} | $I_F = 0$ mA, $V_O = V_{CC} = 5.5$ V,
$T_A = 25$ °C | | 0.001 | 0.5 | μΑ | | | | $I_F = 0$ mA, $V_O = V_{CC} = 15$ V,
$T_A = 25$ °C | | | 50 | | | Logic Low Supply
Current | I_{CCL} | $I_{F1} = I_{F2} = 16\text{mA}, V_O = \text{Open},$
$V_{CC} = 15V$ | | 140 | 400 | μΑ | | Logic High Supply
Current | I_{CCH} | $I_F = 0$ mA, $V_O = O$ pen
$V_{CC} = 15$ V, $T_A = 25$ °C | | 0.01 | 1 | μΑ | | | | $I_F = 0$ mA, $V_O = 0$ pen
$V_{CC} = 15$ V | | | 4 | | ^{*} Typical Values at T_A = 25°C ### **ELECTRICAL CHARACTERISTICS** ### COUPLED (T_A = 0°C to 70°C unless otherwise specified) | Parameter | Symbol | Test Condition | Min | Тур.* | Max | Unit | |-----------------------------|-----------------|---|---------|-------|----------|------| | Current Transfer Ratio CTR | | ICPL2530
ICPL2531
$I_F = 16\text{mA}, V_O = 0.4V$
$V_{CC} = 4.5V, T_A = 25^{\circ}\text{C}$ | 7
19 | | 50
50 | % | | | | ICPL2530
ICPL2531
$I_F = 16\text{mA}, V_O = 0.5V$
$V_{CC} = 4.5V$ | 5
15 | | | % | | Logic Low
Output Voltage | V _{OL} | ICPL2530
$I_F = 16\text{mA}, I_O = 1.1\text{mA}$
$V_{CC} = 4.5\text{V}, T_A = 25^{\circ}\text{C}$ | | 0.18 | 0.5 | V | | | | ICPL2531
$I_F = 16\text{mA}, I_O = 3\text{mA}$
$V_{CC} = 4.5\text{V}, T_A = 25^{\circ}\text{C}$ | | 0.25 | 0.5 | V | | | | ICPL2530
$I_F = 16\text{mA}, I_O = 0.8\text{mA}$
$V_{CC} = 4.5\text{V}$ | | | 0.5 | V | | | | ICPL2531
$I_F = 16\text{mA}, I_O = 2.4\text{mA}$
$V_{CC} = 4.5\text{V}$ | | | 0.5 | V | ^{*} Typical Values at T_A = 25°C ### **ELECTRICAL CHARACTERISTICS** ### **Switching Characteristics** $(T_A = 0$ °C to 70°C, Vcc = 5V, $I_F = 16$ mA unless otherwise specified) | Parameter | Symbol | Test Condition | Min | Тур.* | Max | Unit | |---|------------------|--|------|-------|------------|------| | Propagation Delay
Time to Logic Low | t _{PHL} | $\begin{aligned} & \text{ICPL2530} \\ & R_L = 4.1 \text{k}\Omega, T_A = 25^{\circ}\text{C} \\ & R_L = 4.1 \text{k}\Omega \end{aligned}$ | | 0.35 | 1.5
2.0 | μs | | | | ICPL2531
$R_L = 1.9k\Omega$, $T_A = 25$ °C
$R_L = 1.9k\Omega$ | | 0.35 | 0.8
1.0 | | | Propagation Delay
Time to Logic High | $t_{ m PLH}$ | $\begin{aligned} & \text{ICPL2530} \\ & R_L = 4.1 \text{k}\Omega, T_A = 25^{\circ}\text{C} \\ & R_L = 4.1 \text{k}\Omega \end{aligned}$ | | 0.5 | 1.5
2.0 | μs | | | | $\begin{aligned} & \text{ICPL2531} \\ & R_L = 1.9 k \Omega, T_A = 25^{\circ} \text{C} \\ & R_L = 1.9 k \Omega \end{aligned}$ | | 0.3 | 0.8
1.0 | | | sient Immunity at $I_F = 0$ r | | $\begin{split} & ICPL2530 \\ & I_F = 0 mA, \ V_{CM} = 10 Vp\text{-}p, \\ & R_L = 4.1 k\Omega \ , \ T_A = 25 ^{\circ}C \end{split}$ | 1000 | 10000 | | V/µs | | | | $\begin{split} & ICPL2531 \\ & I_F = 0mA, \ V_{CM} = 1000Vp\text{-p}, \\ & R_L = 1.9k\Omega \ , \ T_A = 25^{\circ}C \end{split}$ | 1000 | 10000 | | V/µs | | Common Mode Transient Immunity at Logic Low | CM_L | ICPL2530 $I_F = 16 \text{mA}, V_{CM} = 10 \text{Vp-p}, \\ R_L = 4.1 \text{k}\Omega, T_A = 25 ^{\circ}\text{C}$ | 1000 | 10000 | | V/µs | | | | ICPL2531 $I_F = 16\text{mA}, \ V_{CM} = 1000\text{Vp-p}, \ R_L = 1.9\text{k}\Omega \ , \ T_A = 25^{\circ}\text{C}$ | 1000 | 10000 | | V/µs | ### * Typical Values at T_A = 25°C - Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e. $V_O > 2.0V$). - Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e. $V_O < 0.8V$). Fig 1 Forward Current vs Forward Voltage Fig 3 Normalized CTR vs Forward Current Fig 5 Propagation Delay vs Load Resistance Fig 2 Output Current vs Output Voltage Fig 4 Normalized CTR vs Ambient Temperature Fig 6 Propagation Delay vs Ambient Temperature Fig 7 Logic High Output Current vs T_A V_O 0V 5V V_{OL} 1.5V V_{OL} Fig 8 Switching Time Test Circuit Fig 9 Transient Immunity Test Circuit ### **ORDER INFORMATION** | ICPL2530 | | | | | | | |----------|---------------|---------------------------|-------------------|--|--|--| | After PN | PN | Description | Packing quantity | | | | | None | ICPL2530 | Standard DIP8 | 45 pcs per tube | | | | | G | ICPL2530G | 10mm Lead Spacing | 45 pcs per tube | | | | | SM | ICPL2530SM | Surface Mount | 45 pcs per tube | | | | | SMT&R | ICPL2530SMT&R | Surface Mount Tape & Reel | 1000 pcs per reel | | | | | ICPL2531 | | | | | | | |----------|---------------|---------------------------|-------------------|--|--|--| | After PN | PN | Description | Packing quantity | | | | | None | ICPL2531 | Standard DIP8 | 45 pcs per tube | | | | | G | ICPL2531G | 10mm Lead Spacing | 45 pcs per tube | | | | | SM | ICPL2531SM | Surface Mount | 50 pcs per tube | | | | | SMT&R | ICPL2531SMT&R | Surface Mount Tape & Reel | 1000 pcs per reel | | | | ### PACKAGE DIMENSIONS (mm) DIP **G FORM** **SMD** ## RECOMMENDED PAD LAYOUT FOR SMD (mm) ### **REFLOW SOLDERING TEMPERATURE PROFILE** ### TAPE AND REEL PACKAGING Direction of feed from reel | Dimension | Α | В | D ₀ | D ₁ | E | F | |-----------|----------------|----------------|----------------|----------------|-------------------|---------| | (mm) | 10.4±0.1 | 10.0±0.1 | 1.5±0.1 | 1.5±0.1 | 1.75±0.1 | 7.5±0.1 | | Dimension | P ₀ | P ₁ | P ₂ | t | w | К | | (mm) | 4.0±0.1 | 12.0±0.1 | 2.0±0.1 | 0.4±0.1 | 16.0
+0.3/-0.1 | 4.5±0.1 | #### **NOTES:** - Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices. - The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation. - For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives. - When requiring a device for any "specific" application, please contact our sales for advice. - The contents described herein are subject to change without prior notice. - Do not immerse device's body in solder paste.