

ELECTRICAL CHARACTERISTICS

INPUT ($T_A = 0$ °C to 70°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Forward Voltage	$V_{\rm F}$	$I_F = 16 \text{mA}, T_A = 25 ^{\circ}\text{C}$		1.45	1.8	V
Reverse Voltage	V_R	$I_R = 10 \mu A$	5.0			V
Temperature Coefficient	V _F /T _A	$I_F = 16mA$		-1.9		mV/°C
Input Capacitance	C _{IN}	$V_F = 0V$, $f = 1MHz$		60		pF

OUTPUT ($T_A = 0$ °C to 70°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Logic High Output Current	I_{OH}	$I_F = 0$ mA, $V_O = V_{CC} = 5.5$ V, $T_A = 25$ °C		0.001	0.5	μΑ
		$I_F = 0$ mA, $V_O = V_{CC} = 15$ V, $T_A = 25$ °C			50	
Logic Low Supply Current	I_{CCL}	$I_{F1} = I_{F2} = 16\text{mA}, V_O = \text{Open},$ $V_{CC} = 15V$		140	400	μΑ
Logic High Supply Current	I_{CCH}	$I_F = 0$ mA, $V_O = O$ pen $V_{CC} = 15$ V, $T_A = 25$ °C		0.01	1	μΑ
		$I_F = 0$ mA, $V_O = 0$ pen $V_{CC} = 15$ V			4	

^{*} Typical Values at T_A = 25°C

ELECTRICAL CHARACTERISTICS

COUPLED (T_A = 0°C to 70°C unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Current Transfer Ratio CTR		ICPL2530 ICPL2531 $I_F = 16\text{mA}, V_O = 0.4V$ $V_{CC} = 4.5V, T_A = 25^{\circ}\text{C}$	7 19		50 50	%
		ICPL2530 ICPL2531 $I_F = 16\text{mA}, V_O = 0.5V$ $V_{CC} = 4.5V$	5 15			%
Logic Low Output Voltage	V _{OL}	ICPL2530 $I_F = 16\text{mA}, I_O = 1.1\text{mA}$ $V_{CC} = 4.5\text{V}, T_A = 25^{\circ}\text{C}$		0.18	0.5	V
		ICPL2531 $I_F = 16\text{mA}, I_O = 3\text{mA}$ $V_{CC} = 4.5\text{V}, T_A = 25^{\circ}\text{C}$		0.25	0.5	V
		ICPL2530 $I_F = 16\text{mA}, I_O = 0.8\text{mA}$ $V_{CC} = 4.5\text{V}$			0.5	V
		ICPL2531 $I_F = 16\text{mA}, I_O = 2.4\text{mA}$ $V_{CC} = 4.5\text{V}$			0.5	V

^{*} Typical Values at T_A = 25°C

ELECTRICAL CHARACTERISTICS

Switching Characteristics

 $(T_A = 0$ °C to 70°C, Vcc = 5V, $I_F = 16$ mA unless otherwise specified)

Parameter	Symbol	Test Condition	Min	Тур.*	Max	Unit
Propagation Delay Time to Logic Low	t _{PHL}	$\begin{aligned} & \text{ICPL2530} \\ & R_L = 4.1 \text{k}\Omega, T_A = 25^{\circ}\text{C} \\ & R_L = 4.1 \text{k}\Omega \end{aligned}$		0.35	1.5 2.0	μs
		ICPL2531 $R_L = 1.9k\Omega$, $T_A = 25$ °C $R_L = 1.9k\Omega$		0.35	0.8 1.0	
Propagation Delay Time to Logic High	$t_{ m PLH}$	$\begin{aligned} & \text{ICPL2530} \\ & R_L = 4.1 \text{k}\Omega, T_A = 25^{\circ}\text{C} \\ & R_L = 4.1 \text{k}\Omega \end{aligned}$		0.5	1.5 2.0	μs
		$\begin{aligned} & \text{ICPL2531} \\ & R_L = 1.9 k \Omega, T_A = 25^{\circ} \text{C} \\ & R_L = 1.9 k \Omega \end{aligned}$		0.3	0.8 1.0	
sient Immunity at $I_F = 0$ r		$\begin{split} & ICPL2530 \\ & I_F = 0 mA, \ V_{CM} = 10 Vp\text{-}p, \\ & R_L = 4.1 k\Omega \ , \ T_A = 25 ^{\circ}C \end{split}$	1000	10000		V/µs
		$\begin{split} & ICPL2531 \\ & I_F = 0mA, \ V_{CM} = 1000Vp\text{-p}, \\ & R_L = 1.9k\Omega \ , \ T_A = 25^{\circ}C \end{split}$	1000	10000		V/µs
Common Mode Transient Immunity at Logic Low	CM_L	ICPL2530 $I_F = 16 \text{mA}, V_{CM} = 10 \text{Vp-p}, \\ R_L = 4.1 \text{k}\Omega, T_A = 25 ^{\circ}\text{C}$	1000	10000		V/µs
		ICPL2531 $I_F = 16\text{mA}, \ V_{CM} = 1000\text{Vp-p}, \ R_L = 1.9\text{k}\Omega \ , \ T_A = 25^{\circ}\text{C}$	1000	10000		V/µs

* Typical Values at T_A = 25°C

- Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{CM}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e. $V_O > 2.0V$).
- Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{CM}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e. $V_O < 0.8V$).

Fig 1 Forward Current vs Forward Voltage

Fig 3 Normalized CTR vs Forward Current

Fig 5 Propagation Delay vs Load Resistance

Fig 2 Output Current vs Output Voltage

Fig 4 Normalized CTR vs Ambient Temperature

Fig 6 Propagation Delay vs Ambient Temperature

Fig 7 Logic High Output Current vs T_A

V_O 0V 5V V_{OL} 1.5V V_{OL}

Fig 8 Switching Time Test Circuit

Fig 9 Transient Immunity Test Circuit

ORDER INFORMATION

ICPL2530						
After PN	PN	Description	Packing quantity			
None	ICPL2530	Standard DIP8	45 pcs per tube			
G	ICPL2530G	10mm Lead Spacing	45 pcs per tube			
SM	ICPL2530SM	Surface Mount	45 pcs per tube			
SMT&R	ICPL2530SMT&R	Surface Mount Tape & Reel	1000 pcs per reel			

ICPL2531						
After PN	PN	Description	Packing quantity			
None	ICPL2531	Standard DIP8	45 pcs per tube			
G	ICPL2531G	10mm Lead Spacing	45 pcs per tube			
SM	ICPL2531SM	Surface Mount	50 pcs per tube			
SMT&R	ICPL2531SMT&R	Surface Mount Tape & Reel	1000 pcs per reel			

PACKAGE DIMENSIONS (mm)

DIP

G FORM

SMD

RECOMMENDED PAD LAYOUT FOR SMD (mm)

REFLOW SOLDERING TEMPERATURE PROFILE

TAPE AND REEL PACKAGING

Direction of feed from reel

Dimension	Α	В	D ₀	D ₁	E	F
(mm)	10.4±0.1	10.0±0.1	1.5±0.1	1.5±0.1	1.75±0.1	7.5±0.1
Dimension	P ₀	P ₁	P ₂	t	w	К
(mm)	4.0±0.1	12.0±0.1	2.0±0.1	0.4±0.1	16.0 +0.3/-0.1	4.5±0.1

NOTES:

- Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales for advice.
- The contents described herein are subject to change without prior notice.
- Do not immerse device's body in solder paste.