

Truth Table

LED	V _{cc} – GND (Turn ON, +ve going)	V _{cc} – GND (Turn OFF – ve going)	Vo
OFF	0-30V	0-30V	LOW
ON	0 – 11.0V	0-9.5V	LOW
ON	11.0 - 13.5V	9.5 – 12.0V	TRANSITION
ON	13.5 - 30V	12 - 30V	HIGH

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T _A	- 40	105	°C
Supply Voltage	$V_{CC} - V_{EE}$	15	30	V
Input Current (ON)	I _{F(ON)}	7	16	mA
Input Voltage (OFF)	V _{F(OFF)}	0	0.8	V

ELECTRICAL CHARACTERISTICS (Typical Values at $V_{CC} - V_{EE} = 30V$ and $T_A = 25^{\circ}C$, Minimum and Maximum Values at Recommended Operating Conditions, unless otherwise specified)

INPUT

ISOCOM

⊡ COM-

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Forward Voltage	\mathbf{V}_{F}	$I_F = 10 mA$	1.2	1.37	1.8	V
Forward Voltage $\Delta V_F / \Delta^T$ TemperatureCoefficient		$I_F = 10 \text{mA}$		-1.237		mV/°C
Reverse Voltage	V_R	$I_R = 10 \mu A$	5			V
Input Threshold Current (Low to High)	$I_{\rm FLH}$	$V_{CC} = 30V$ $V_O > 5V$		1.8	5	mA
Input Threshold Voltage (High to Low)		$V_{CC} = 30V$ $V_{O} < 5V$	0.8			V
Input Capacitance	C _{IN}	$V_F = 0V, f = 1MHz$		33		pF

OUTPUT

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
High Level Supply Current				2.4	3.5	mA
		$I_F = 0mA, V_{CC} = 30V$ $V_O = Open$		2.5	3.5	mA
High Level Output Current	I _{OH}	Maximum Pulse Width = $50\mu s$, $V_0 = V_{CC} - 1.5V$			-1.0	А
		$V_0 - V_{CC} - 1.5V$ Maximum Pulse Width = 10 μ s, $V_0 = V_{CC} - 4V$			-2.5	
Low Level Output Current	I _{OL}	Maximum Pulse Width = $50\mu s$, $V_0 = V_{EE} + 1.5V$	1.0			А
		Maximum Pulse Width = $10\mu s$, $V_O = V_{EE} + 4V$	2.5			
High Level V _{OH} Output Voltage		$I_F = 10mA, I_O = -100mA$	V _{CC} -0.3	V _{CC} -0.1		V
Low Level V _{OL} Output Voltage		$I_{\rm F} = 0 {\rm mA}, \ I_{\rm O} = 100 {\rm mA}$		V _{EE} +0.1	V _{EE} +0.25	V
UVLO Threshold	V _{UVLO+}	$V_0 > 5V, I_F = 10mA$	11.0	12.7	13.5	V
	V _{UVLO-}	$V_0 < 5V, I_F = 10mA$	9.5	11.2	12.0	V
UVLO Hysteresis	UVLO _{HYS}			1.5		V

ELECTRICAL CHARACTERISTICS (Typical Values at $V_{CC} - V_{EE} = 30V$ and $T_A = 25^{\circ}C$, Minimum and Maximum Values at Recommended Operating Conditions, unless otherwise specified)

SWITCHING

ISOCOM

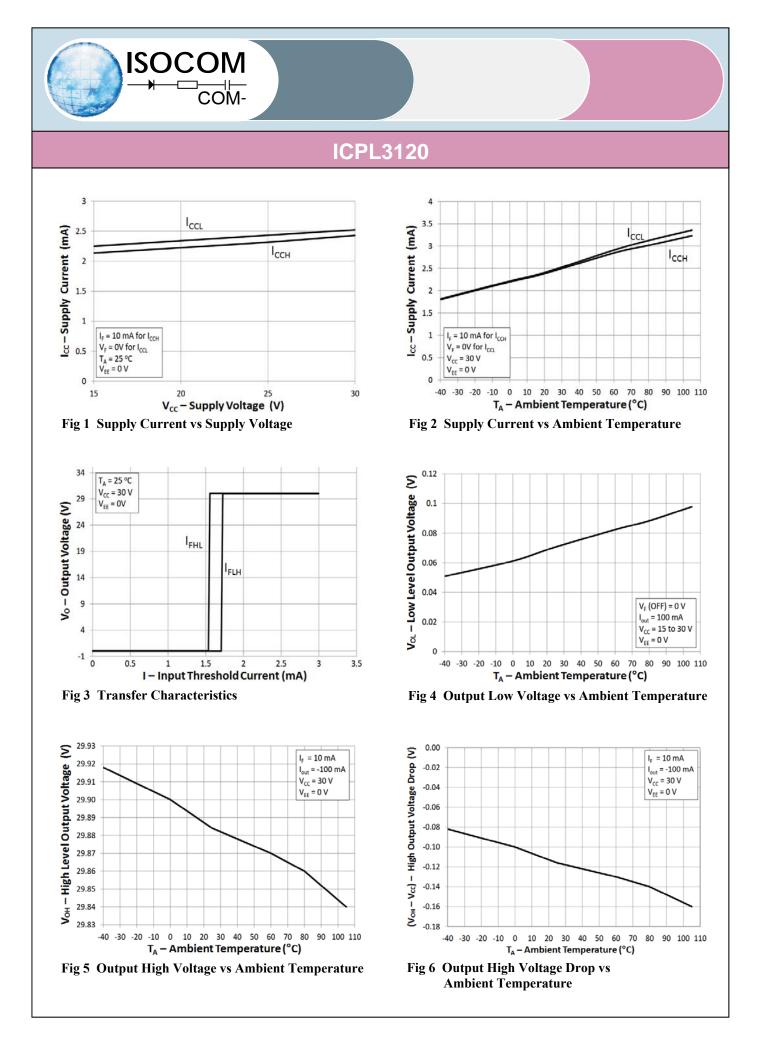
⊡ COM-

Parameter	Symbol	Test Condition	Min	Тур.	Max	Unit
Propagation Delay Time to High Output Level	t _{PLH}	$I_F = 7 \text{ to } 16\text{mA},$ $V_{CC} = 15 \text{ to } 30\text{V},$ $V_{FE} = 0\text{V}$	50	130	500	ns
Propagation Delay Time to Low Output Level	$t_{\rm PHL}$	$Rg = 10\Omega,$ Cg = 25nF,	50	130	500	
Pulse Width Distortion $ t_{PHL} - t_{PLH} $ for any given device	PWD	f = 10kHz, Duty Cycle = 50%		5	70	
Propagation Delay Difference (t _{PHL} - t _{PLH}) between any two Devices	PDD		-100		100	
Output Rise Time (10% to 90%)	t _r			35		
Output Fall Time (90% to 10%)	t _f			35		
Common Mode Transient Immunity at High Output Level	CM _H	$I_F = 10 \text{ to } 16\text{mA},$ $V_{CC} = 30\text{V}$ $V_{CM} = 1500\text{V},$ $T_A = 25^{\circ}\text{C}$	25	35		kV/μs
Common Mode Transient Immunity at Low Output Level	CM _L	$V_{F} = 0V,$ $V_{CC} = 30V$ $V_{CM} = 1500V,$ $T_{A} = 25^{\circ}C$	25	35		kV/μs

ELECTRICAL CHARACTERISTICS (Typical Values at V_{CC} – V_{EE} = 30V and T_A = 25°C, Minimum and Maximum Values at Recommended Operating Conditions, unless otherwise specified)

ISOLATION

Parameter Symbol Test Condition		Min	Тур.	Max	Unit	
Insulation Voltage	lation Voltage V_{ISO} $RH = 40\% - 60\%, T_A = 25^{\circ}C$ 5000 $t = 1 \text{ min},$		5000			V
Input - Output Resistance R_{I-O} $V_{I-O} = 500 VDC$			10 ¹²		Ω	
Input - Output Capacitance	C _{I-O}	f=1MHz		0.92		pF

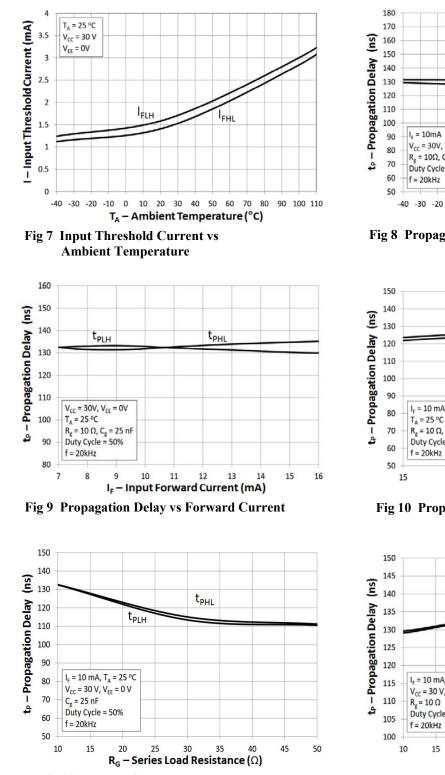
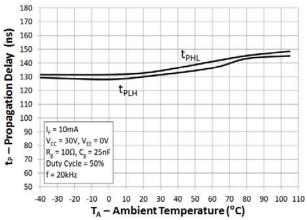
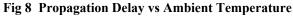
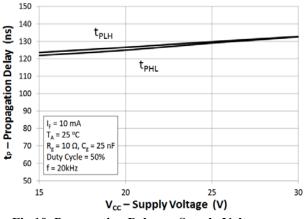

Note :

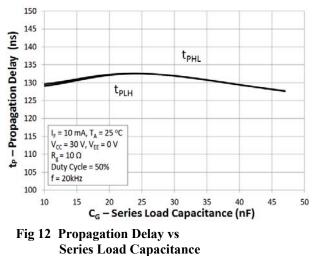
1. A 0.1uF or bigger bypass capacitor must be connected across pin 8 and pin 5.

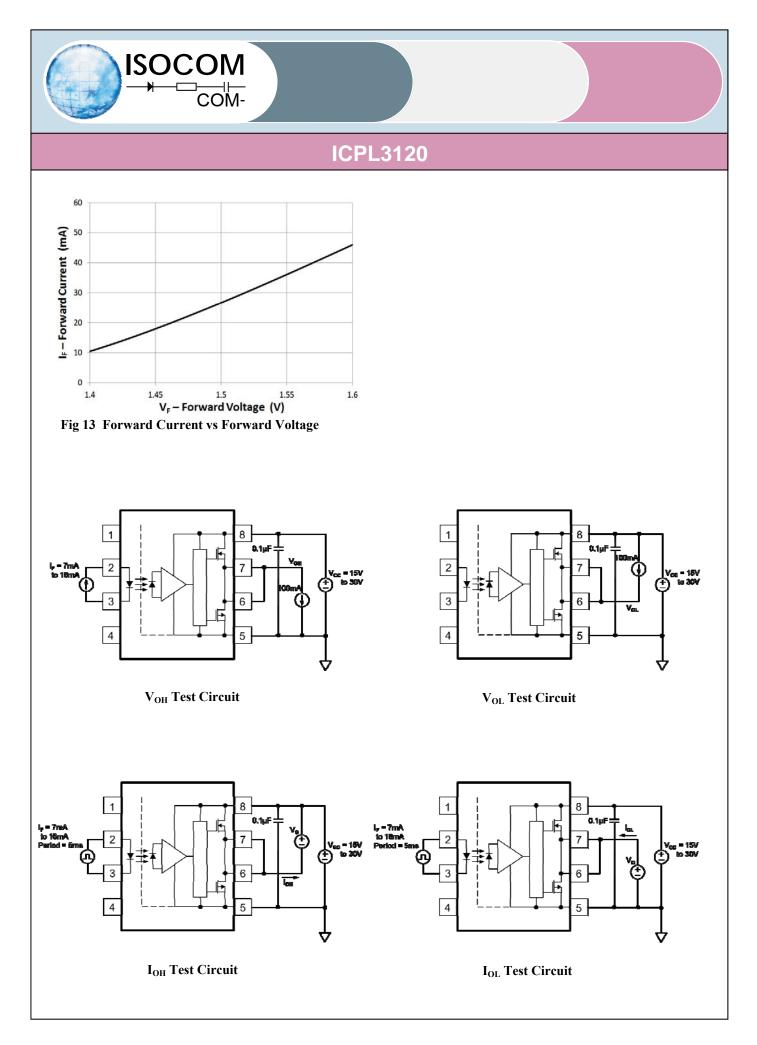
ISOCOM

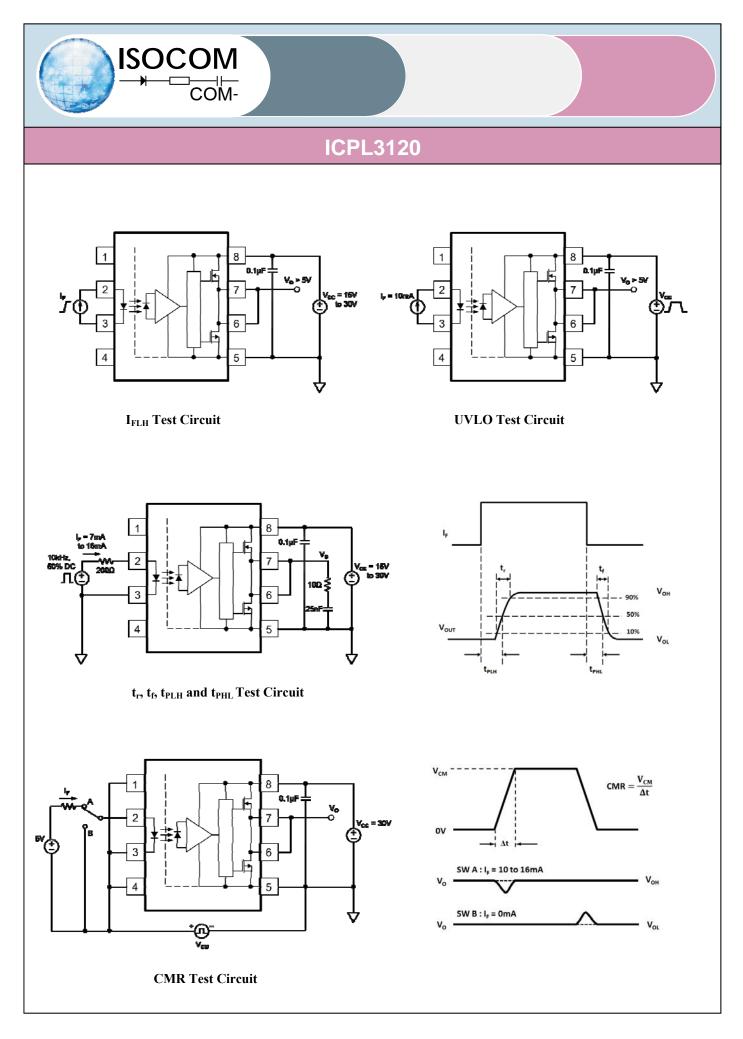
COM-

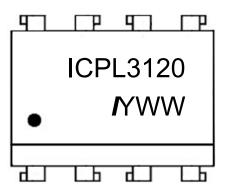
- 2. PDD is the difference of t_{PHL} and t_{PLH} between any two ICPL3120 under same test conditions.
- 3. Common Mode Transient Immunity in High stage is the maximum tolerable negative dV_{CM}/dt on the trailing edge of the common mode impulse signal, V_{CM} , to assure that the output will remain high ($V_O > 15V$).
- 4. Common Mode Transient Immunity in Low stage is the maximum tolerable positive dV_{CM}/dt on the leading edge of the common mode impulse signal, V_{CM} , to assure that the output will remain low ($V_O < 1V$).

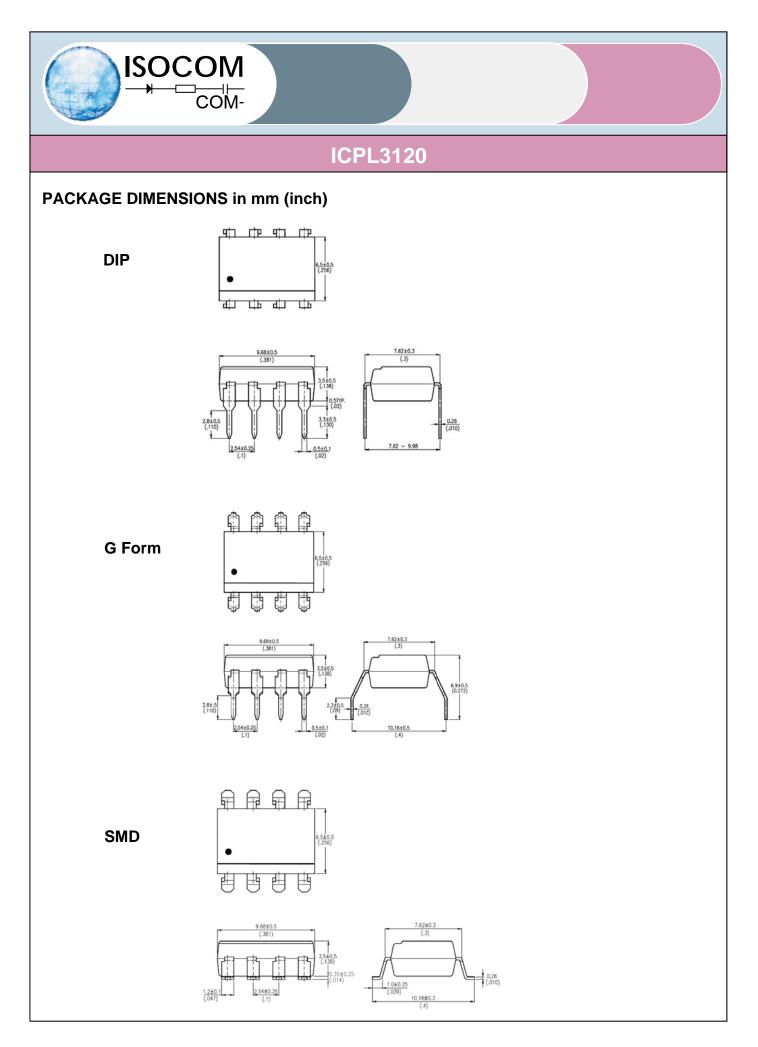






Fig 11 Propagation Delay vs Series Load Resistance

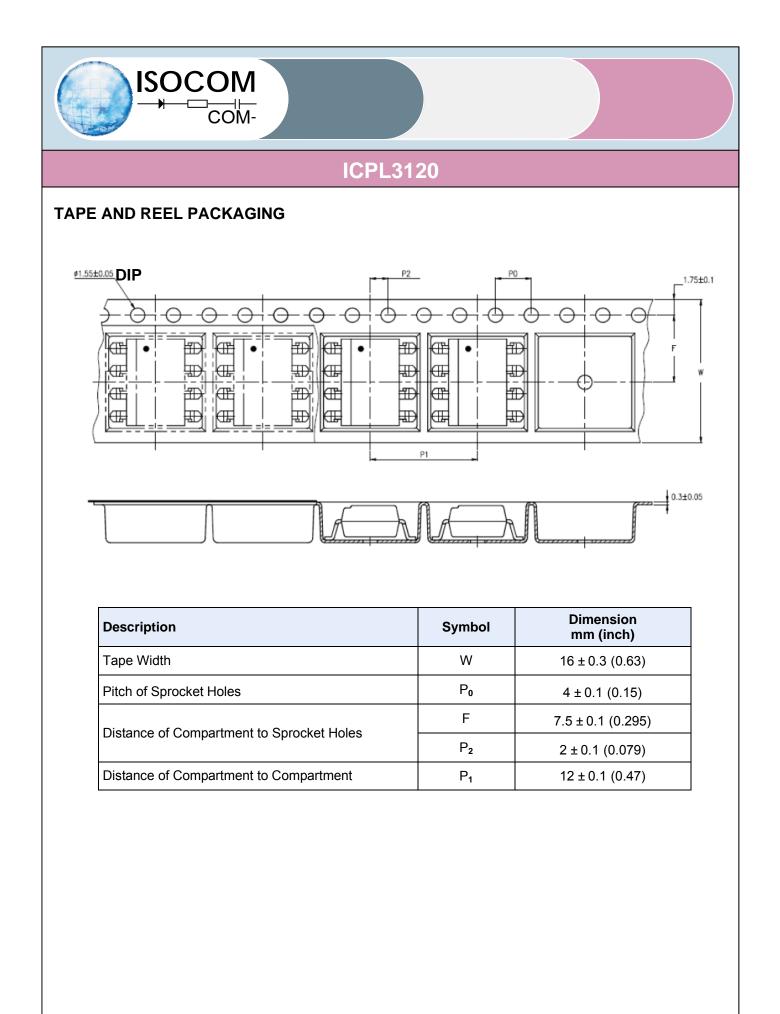


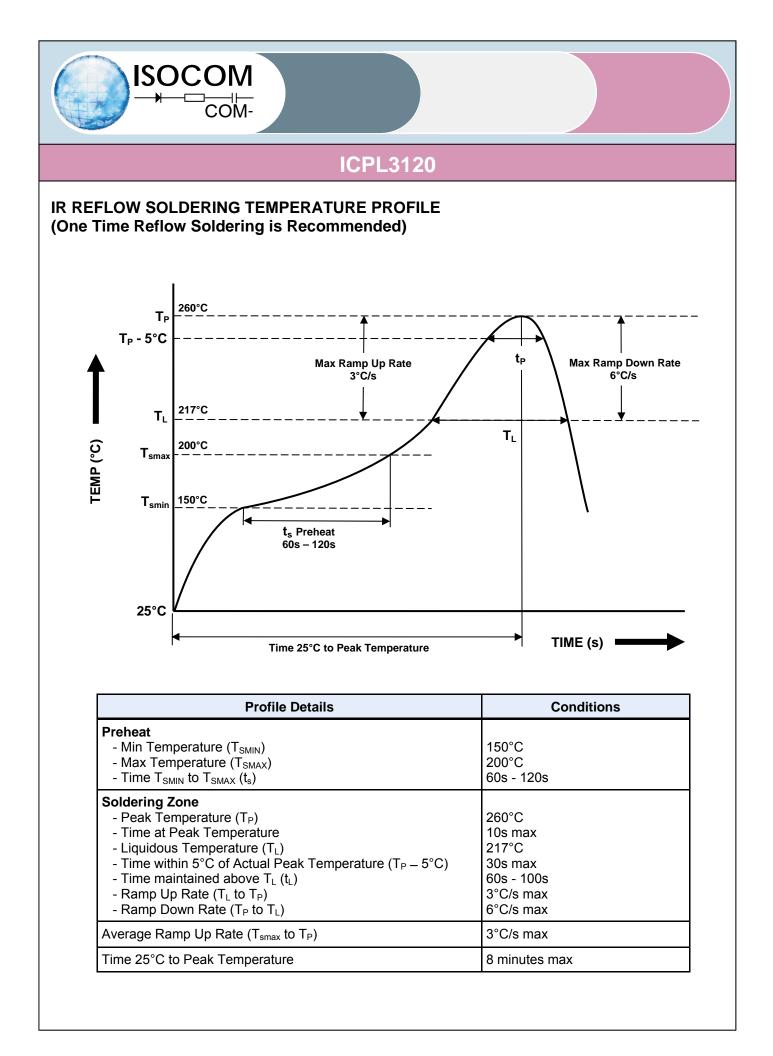





ORDER INFORMATION

ICPL3120						
After PN	PN	Description	Packing quantity			
None	ICPL3120	Standard DIP8	50 pcs per tube			
G	ICPL3120G	10mm Lead Spacing	50 pcs per tube			
SM	ICPL3120SM	Surface Mount	50 pcs per tube			
SMT&R	ICPL3120SMT&R	Surface Mount Tape & Reel	1000 pcs per reel			


DEVICE MARKING



- ICPL3120 denotes Device Part Number
- I denotes Isocom
- Y denotes 1 digit Year code
- WW denotes 2 digit Week code

$11 \ 19/04/2017$

NOTES :

- Isocom is continually improving the quality, reliability, function or design and Isocom reserves the right to make changes without further notices.
- The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- For equipment/application where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc., please contact our sales representatives.
- When requiring a device for any "specific" application, please contact our sales for advice.
- The contents described herein are subject to change without prior notice.
- Do not immerse device body in solder paste.

ISOCOM

COM-

DISCLAIMER

ISOCOM

ISOCOM is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing ISOCOM products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such ISOCOM products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that ISOCOM products are used within specified operating ranges as set forth in the most recent ISOCOM products specifications.

____ The ISOCOM products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These ISOCOM products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation Instruments, traffic signal instruments, combustion control instruments, medical Instruments, all types of safety devices, etc... Unintended Usage of ISOCOM products listed in this document shall be made at the customer's own risk.

____ Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with domestic garbage.

____ The products described in this document are subject to the foreign exchange and foreign trade laws.

_____The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by ISOCOM Components for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of ISOCOM Components or others.

_ The information contained herein is subject to change without notice.