TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Revision History	2
Specifications	3
Absolute Maximum Ratings	5
ESD Caution	5
Pin Configuration and Function Descriptions	6
Interface Schematics	6
Typical Performance Characteristics	7

	1843 MITZ Tulling	••••
	2015 MHz Tuning	8
	2350 MHz Tuning	9
	2600 MHz Tuning	. 10
A	pplications Information	11
	Components for Selected Frequencies	11
	Evaluation PCB	. 12
О	utline Dimensions	. 13
	Ordering Cuide	13

REVISION HISTORY

This Hittite Microwave Products data sheet has been reformatted to meet the styles and standards of Analog Devices, Inc.

5/2016—v.04.1115 to Rev. E

Updated Format	Universal
Deleted HMC546LP2	Throughout
Deleted Table 2, Renumbered Sequentially	4
Added Pin Function Descriptions, Table 5, Renun	mbered
Sequentially	
Changes to Table 7	13
Updated Outline Dimensions	14
Changes to Ordering Guide	14

SPECIFICATIONS

 $T_A = 25^{\circ}\text{C}$, $V_{DD} = 0 \text{ V/3 V dc}$, $V_{CTL} = 0 \text{ V/3 V dc}$, 50 Ω system. Specifications and data reflect measurements using the respective application circuit components for each frequency band as listed in Table 1.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGE			200		2700	MHz
INSERTION LOSS						
Tx to RFC		f = 1805 MHz to 1910 MHz		0.3	0.6	dB
		f = 2010 MHz to 2025 MHz		0.3	dB	
		f = 2300 MHz to 2480 MHz		0.6	8.0	dB
		f = 2500 MHz to 2700 MHz		0.5	8.0	dB
RFC to Rx		f = 1805 MHz to 1910 MHz		0.4	0.7	dB
		f = 2010 MHz to 2025 MHz		0.3	0.6	dB
		f = 2300 MHz to 2480 MHz		1.1	1.5	dB
		f = 2500 MHz to 2700 MHz		0.7	1.1	dB
ISOLATION						
Tx to RFC		f = 1805 MHz to 1910 MHz	15	23		dB
		f = 2010 MHz to 2025 MHz	14	22		dB
		f = 2300 MHz to 2480 MHz	15	20		dB
		f = 2500 MHz to 2700 MHz	10	15		dB
RFC to Rx		f = 1805 MHz to 1910 MHz	22	30		dB
THE COTIX		f = 2010 MHz to 2025 MHz	20	27		dB
		f = 2300 MHz to 2480 MHz	25	30		dB
		f = 2500 MHz to 2700 MHz	30	40		dB
RETURN LOSS						
Tx to RFC		f = 1805 MHz to 1910 MHz		25		dB
		f = 2010 MHz to 2025 MHz		20		dB
		f = 2300 MHz to 2480 MHz		22		dB
		f = 2500 MHz to 2700 MHz		20		dB
RFC to Rx		f = 1805 MHz to 1910 MHz		25		dB
		f = 2010 MHz to 2025 MHz		25		dB
		f = 2300 MHz to 2480 MHz		10		dB
		f = 2500 MHz to 2700 MHz		12		dB
INPUT LINEARITY						
0.1 dB Power Compression	P0.1dB					
Tx to RFC		f = 1805 MHz to 1910 MHz	38	40		dBm
		f = 2010 MHz to 2025 MHz	39	41		dBm
		f = 2300 MHz to 2480 MHz	36.5	38.5		dBm
		f = 2500 MHz to 2700 MHz	38.5	40.5		dBm
RFC to Rx		f = 1805 MHz to 1910 MHz	19	21		dBm
		f = 2010 MHz to 2025 MHz	19	21		dBm
		f = 2300 MHz to 2480 MHz	17	19		dBm
		f = 2500 MHz to 2700 MHz	18	20		dBm
Input Third-Order Intercept	IP3	Two-tone input power = 19 dBm/tone, $\Delta f = 1$ MHz				
Tx to RFC	" -	f = 1805 MHz to 1910 MHz		65		dBm
		f = 2010 MHz to 2025 MHz		64		dBm
		f = 2300 MHz to 2480 MHz		67		dBm
		f = 2500 MHz to 2700 MHz		62		dBm

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
RFC to Rx		f = 1805 MHz to 1910 MHz		33		dBm
		f = 2010 MHz to 2025 MHz		32		dBm
		f = 2300 MHz to 2480 MHz		33		dBm
		f = 2500 MHz to 2700 MHz		32		dBm
Input Third-Order Intercept, $V_{CTL} = 0 \text{ V}/5 \text{ V}$	IP3	Two-tone input power = 19 dBm/tone, $\Delta f = 1$ MHz				
Tx to RFC		f = 1805 MHz to 1910 MHz		66		dBm
		f = 2010 MHz to 2025 MHz		64		dBm
		f = 2300 MHz to 2480 MHz		67		dBm
		f = 2500 MHz to 2700 MHz		62		dBm
RFC to Rx		f = 1805 MHz to 1910 MHz		44		dBm
		f = 2010 MHz to 2025 MHz	32 33 32 66 64 67 62 44 45 45 45 41 102		dBm	
		f = 2300 MHz to 2480 MHz		45		dBm
		f = 2500 MHz to 2700 MHz		43		dBm
SWITCHING CHARACTERISTICS						
Rise and Fall Time t _{RISE} , t _{FALL}	t _{RISE} , t _{FALL}	10% to 90% of RF output		21		ns
On Time	ton	50% V _{CTL} to 90% of RF output		102		ns
Off Time	t _{OFF}	50% V _{CTL} to 10% of RF output		36		ns

ABSOLUTE MAXIMUM RATINGS

Table 2.

1 autc 2.	
Parameter	Rating
Supply Voltage (V _{DD})	10 V
Control Voltage Range (V _{CTL})	-0.2 V to V_{DD} to $+1 \text{ V}$
RF Input Power, CW peak1	
Tx Port, $V_{DD} = 3 V$ and $V_{DD} = 5 V$	40 dBm
Rx Port, $V_{DD} = 3 \text{ V}$	24 dBm
Rx Port, $V_{DD} = 5 \text{ V}$	29 dBm
Hot Switch	24 dBm
Continuous Power Dissipation (PDISS)	
Tx Port, $V_{DD} = 3 V$ and $V_{DD} = 5 V$	1.12 W
Rx Port, $V_{DD} = 3 \text{ V}$	73 mW
Rx Port, $V_{DD} = 5 \text{ V}$	232 mW
Junction to Case Thermal Resistance, θ_{JC}	
Tx Port, $V_{DD} = 3 V$ and $V_{DD} = 5 V$	54°C/W
Rx Port, $V_{DD} = 3 \text{ V}$	68°C/W
Rx Port, $V_{DD} = 5 \text{ V}$	86°C/W
Temperature	
Junction, T _J	150°C
Storage	−65°C to +150°C
Reflow (MSL1 Rating)	260°C
ESD Sensitivity	
Human Body Model (HBM)	250 V (Class 1A)

 $^{^{\}rm 1}$ Maximum input power can be higher when the radio frequency (RF) input is pulsed with a duty cycle <100%.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device.Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

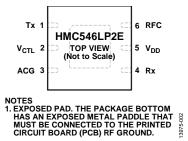


Figure 2. Pin Configuration

Table 3. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	Tx	Radio Frequency (RF) Transmit. This pin is dc- coupled and not well matched to 50 Ω . External matching components and a dc blocking capacitor are required.
2	V _{CTL}	Control Voltage Input. For more information about the V _{CT} pin, see Table 4 and Figure 3.
3	ACG	AC Ground. An external capacitor from ACG to ground is required.
4	Rx	RF Receive. This pin is dc-coupled and not well matched to 50 Ω . External matching components and a dc blocking capacitor are required.
5	V_{DD}	Supply Voltage. See Figure 4 for the interface schematic.
6	RFC	RF Common. This pin is dc-coupled and not well matched to 50Ω . External matching components and a dc blocking capacitor are required.
	EPAD	Exposed Pad. The package bottom has an exposed metal paddle that must be connected to the printed circuit board (PCB) RF ground.

Table 4. Truth Table

Control Input ¹			Signal Path State
V _{CTL}	V _{DD}	RFC to Tx	RFC to Rx
0 V	V_{DD}	Off	On
V_{DD}	V_{DD}	On	Off
0 V	0 V	On	Off
High-Z	High-Z	On	Off

 $^{^1}$ V_{DD} = 3 V to 8 V, and control input voltage tolerances are ± 0.2 V dc.

INTERFACE SCHEMATICS

Figure 3. V_{CTL} Interface

Figure 4. V_{DD} Interface

TYPICAL PERFORMANCE CHARACTERISTICS

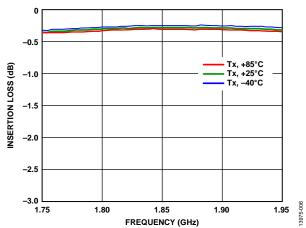


Figure 5. Tx to RFC Insertion Loss vs. Frequency over Temperature

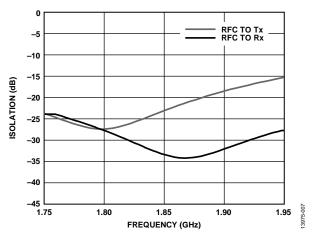


Figure 6. Isolation vs. Frequency

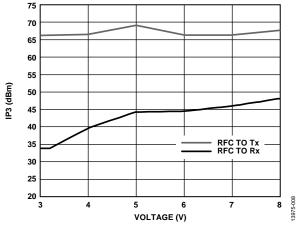


Figure 7. Input IP3 vs. Voltage

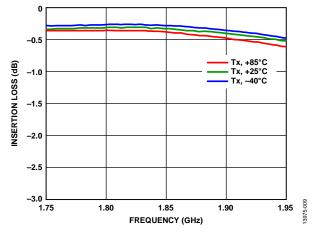


Figure 8. RFC to Rx Insertion Loss vs. Frequency over Temperature

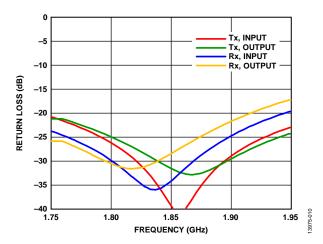


Figure 9. Return Loss vs. Frequency

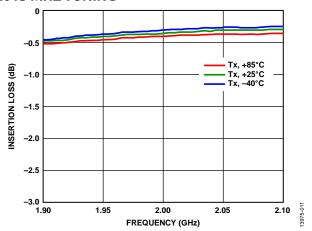


Figure 10. Tx to RFC Insertion Loss vs. Frequency over Temperature

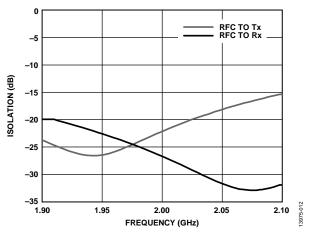


Figure 11. Isolation vs. Frequency

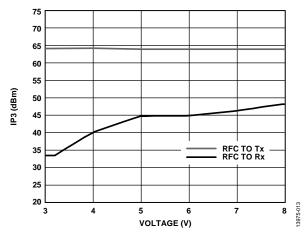


Figure 12. Input IP3 vs. Voltage

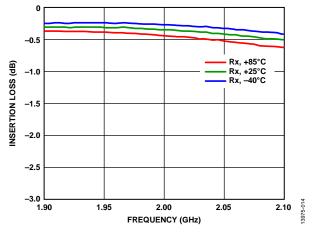


Figure 13. RFC to Rx Insertion Loss vs. Frequency over Temperature

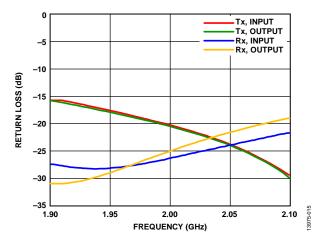


Figure 14. Return Loss vs. Frequency

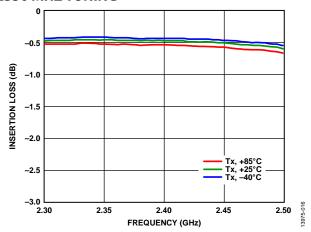


Figure 15. Tx to RFC Insertion Loss vs. Frequency over Temperature

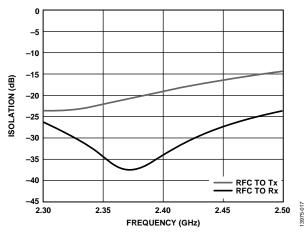


Figure 16. Isolation vs. Frequency

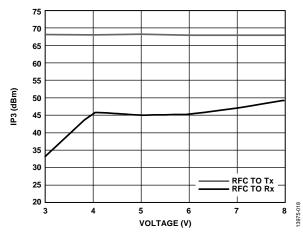


Figure 17. Input IP3 vs. Voltage

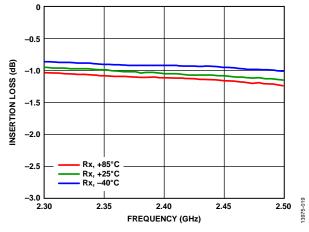


Figure 18. RFC to Rx Insertion Loss vs. Frequency over Temperature

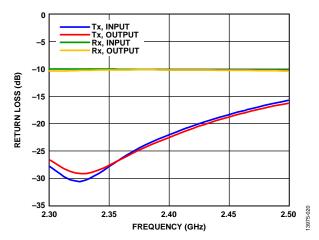


Figure 19. Return Loss vs. Frequency

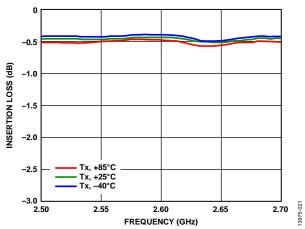


Figure 20. Tx to RFC Insertion Loss vs. Frequency over Temperature

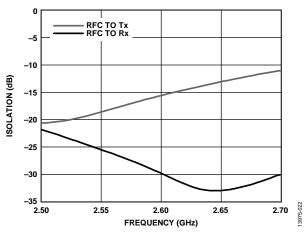


Figure 21. Isolation vs. Frequency

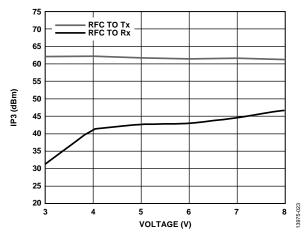


Figure 22. Input IP3 vs. Voltage

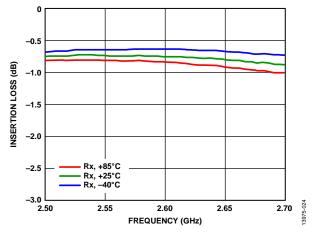


Figure 23. RFC to Rx Insertion Loss vs. Frequency over Temperature

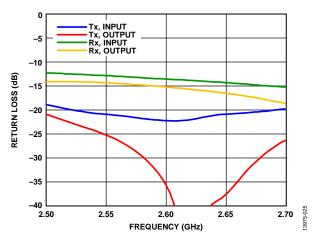


Figure 24. Return Loss vs. Frequency

APPLICATIONS INFORMATION

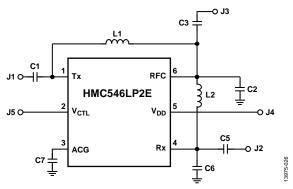


Figure 25. Applications Circuit

COMPONENTS FOR SELECTED FREQUENCIES

Table 5. Evaluation Board Components by Frequency

		Tune	ed Frequency ¹	
Component	1843 MHz	2015 MHz	2350 MHz	2600 MHz
C1, C3, C5 ²	330 pF	330 pF	330 pF	330 pF
C2	1.2 pF	0.8 pF	0.6 pF	0.7 pF
C6	0.5 pF	N/A	N/A	N/A
C7	3.0 pF	2.4 pF	2.0 pF	1.5 pF
L1 ^{3, 4}	5.1 nH	4.3 nH	2.0 nH	1.6 nH
L2 ⁵	4.3 nH	3.9 nH	3.3 nH	2.7 nH

¹ N/A means not applicable.

² DC blocking capacitors.

³ 0402 inductors, 5% tolerance; for tuned frequencies of 1843 MHz, 2015 MHz, and 2350 MHz.

 $^{^{4}}$ 0603 inductor, 5% tolerance; for tuned frequency of 2600 MHz only.

⁵ 0402 inductor, 5% tolerance; for all tuned frequency levels.

EVALUATION PCB

When using the circuit board in an application, generate proper RF circuit design techniques. Ensure that signal lines have 50 Ω impedance and that the package ground leads and exposed paddle are connected directly to the ground plane, as shown in Figure 26. The evaluation circuit board shown in Figure 26 is available from Analog Devices, Inc., upon request.

Bill of Materials

Table 6. Bill of Materials1

Item ²	Description
J1 to J3	PCB mount SMA RF connector
J4 to J6	DC pins
C1 to C3	Capacitors, 0402 package
L1, L2	Inductors
U1	HMC546LP2E transmit/receive switches
PCB ³	110780 evaluation PCB

¹ When requesting an evaluation board, reference the appropriate evaluation PCB number listed in the Ordering Guide section.

³ Circuit board material: Rogers 4350.

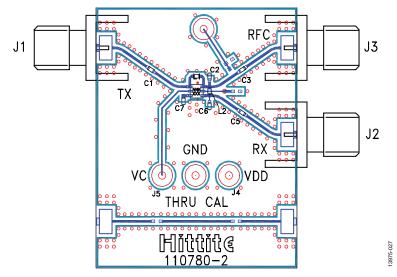


Figure 26. Evaluation Printed Circuit Board (PCB)

² Refer to Table 5 for component values.

OUTLINE DIMENSIONS

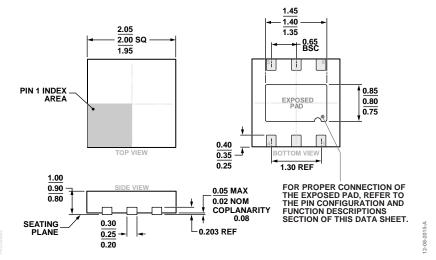


Figure 27. 6-Lead Lead Frame Chip Scale Package [LFCSP] 2 mm × 2mm Body and 0.90 mm Package Height (CP-6-10) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	MSL Rating ²	Package Description	Package Option	Package Marking ³
Model	Ralige	nating	rackage Description	Орион	Marking
HMC546LP2E	-40°C to +85°C	MSL1	6-Lead Lead Frame Chip Scale Package [LFCSP]	CP-6-10	546
					XXXX
HMC546LP2ETR	-40°C to +85°C	MSL1	6-Lead Lead Frame Chip Scale Package [LFCSP]	CP-6-10	546
					XXXX
110782-HMC546LP2			Evaluation Board, 1843 MHz Tune		
115201-HMC546LP2			Evaluation Board, 2015 MHz Tune		
115202-HMC546LP2			Evaluation Board, 2350 MHz Tune		
115203-HMC546I P2			Evaluation Board, 2600 MHz Tune		

¹ HMC546LP2E and HMC546LP2ETR are RoHS compliant parts.

Rev. E | Page 13 of 13

² See the Absolute Maximum Ratings section.

³ XXXX is the 4-digit lot number.