




rice Breakdown Voltage n Voltage Temperature t v Voltage Drain Current y Leakage Current, Forward y Leakage Current, Reverse ics eshold Voltage in-Source tance Transconductance	$\begin{array}{l} V_{GS} = 0 \ V, \ I_{D} = 250 \ \mu A \\ \\ I_{D} = 250 \ \mu A, \ Referenced \ to \ 25^{\circ}C \\ \\ V_{DS} = 600 \ V, \ V_{GS} = 0 \ V \\ \\ V_{DS} = 480 \ V, \ T_{C} = 125^{\circ}C \\ \\ V_{GS} = 30 \ V, \ V_{DS} = 0 \ V \\ \\ V_{GS} = -30 \ V, \ V_{DS} = 0 \ V \\ \\ \end{array}$	600 3.0	 0.6 	 10 100 100 -100	V V/°C μΑ ηΑ nA
Irce Breakdown Voltage In Voltage Temperature t Voltage Drain Current y Leakage Current, Forward y Leakage Current, Reverse ics Shold Voltage in-Source tance	$I_{D} = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 600 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = 480 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{GS} = -30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{DS} = V_{GS}, \ I_{D} = 250 \ \mu\text{A}$	 	0.6 	 10 100 100	V/°C μA μA nA
n Voltage Temperature t voltage Drain Current y Leakage Current, Forward y Leakage Current, Reverse ics eshold Voltage in-Source iance	$I_{D} = 250 \ \mu\text{A}, \text{ Referenced to } 25^{\circ}\text{C}$ $V_{DS} = 600 \ \text{V}, \ V_{GS} = 0 \ \text{V}$ $V_{DS} = 480 \ \text{V}, \ T_{C} = 125^{\circ}\text{C}$ $V_{GS} = 30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{GS} = -30 \ \text{V}, \ V_{DS} = 0 \ \text{V}$ $V_{DS} = V_{GS}, \ I_{D} = 250 \ \mu\text{A}$	 	0.6 	 10 100 100	V/°C μA μA nA
e Voltage Drain Current y Leakage Current, Forward y Leakage Current, Reverse ics eshold Voltage in-Source tance	$V_{DS} = 480 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$ $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$			100 100	μA nA
y Leakage Current, Forward y Leakage Current, Reverse ics eshold Voltage in-Source tance	$V_{DS} = 480 \text{ V}, T_{C} = 125 ^{\circ}\text{C}$ $V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$			100 100	μA nA
y Leakage Current, Reverse ics eshold Voltage in-Source tance	$V_{GS} = 30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$			100	nA
y Leakage Current, Reverse ics eshold Voltage in-Source tance	$V_{GS} = -30 \text{ V}, V_{DS} = 0 \text{ V}$ $V_{DS} = V_{GS}, I_D = 250 \mu\text{A}$				
ics eshold Voltage in-Source ance	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.0			
eshold Voltage in-Source tance		3.0			
in-Source tance		3.0			
ance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 1.4 \text{ A}$			5.0	V
ransconductance			1.57	2.0	Ω
	$V_{DS} = 50 \text{ V}, I_D = 1.4 \text{ A}$ (Note 4)		3.5		S
storistics					
			560	730	pF
					pF
					p. pF
					μ.
acteristics					
Delay Time	$V_{DD} = 300 V_{1D} = 5.0 A_{10}$		13	35	ns
Rise Time			45	100	ns
Delay Time			35	80	ns
Fall Time	(Note 4, 5)		40	90	ns
e Charge	V _{DS} = 480 V, I _D = 5.0 A,		16	20	nC
rce Charge	$V_{cc} = 10 V$		3.5		
i o onargo	VGS = 10 V		ა.ე		nC
n Charge	(Note 4, 5)		3.5 7.8		nC nC
n Charge	(Note 4, 5)				
n Charge ode Characteristics a	(Note 4, 5) nd Maximum Ratings		7.8		nC
n Charge ode Characteristics a Continuous Drain-Source Di	(Note 4, 5) and Maximum Ratings ode Forward Current		7.8	2.8	nC A
n Charge ode Characteristics a Continuous Drain-Source Di Pulsed Drain-Source Diode	(Note 4, 5) nd Maximum Ratings ode Forward Current Forward Current		7.8	 2.8 11.2	nC A A
n Charge ode Characteristics a Continuous Drain-Source Di	(Note 4, 5) nd Maximum Ratings ode Forward Current Forward Current		7.8	2.8	nC A
	Delay Time Rise Time Delay Time Fall Time 9 Charge	acitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ apacitancef = 1.0 MHzTransfer Capacitancef = 1.0 MHzacteristics $V_{DD} = 300 \text{ V}, I_D = 5.0 \text{ A},$ Delay Time $V_{DD} = 300 \text{ V}, I_D = 5.0 \text{ A},$ Rise Time $R_G = 25 \Omega$ Time(Note 4, 5)	acitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ f = 1.0 MHzapacitancef = 1.0 MHzTransfer CapacitanceacteristicsDelay Time $V_{DD} = 300 \text{ V}, I_D = 5.0 \text{ A},$ $R_G = 25 \Omega$ Delay TimeTime(Note 4, 5)Delay Time(Note 4, 5)Charge $V_{DS} = 480 \text{ V}, I_D = 5.0 \text{ A},$	acitance $V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$ 560 apacitance f = 1.0 MHz 80 Transfer Capacitance 9 acteristics 13 Delay Time $V_{DD} = 300 \text{ V}, \text{ I}_D = 5.0 \text{ A},$ 45 Delay Time $R_G = 25 \Omega$ 35 Fall Time $V_{DS} = 480 \text{ V}, \text{ I}_D = 5.0 \text{ A},$ 40	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Rev. B, June 2002

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACExTM BottomlessTM CoolFETTM $CROSSVOLT^{TM}$ DOMETM EcoSPARKTM E²CMOSTM EnSignaTM FACTTM FACT Quiet SeriesTM FAST ®

FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] I²C[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MicroPak[™] MICROWIRE[™] OPTOLOGIC[®] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] SPM[™] Stealth[™] SuperSOT[™]-3 SuperSOT[™]-6 SuperSOT[™]-8 SyncFET[™] TinyLogic[™] TruTranslation[™] UHC[™] UltraFET[®] VCX™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Product Status	Definition
Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
	Formative or In Design First Production Full Production