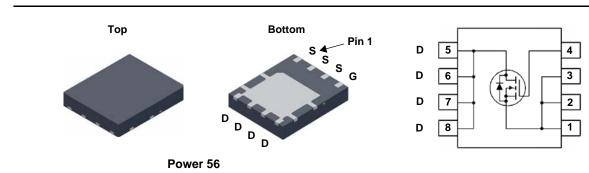


SEMICONDUCTOR®

FDMS7660 N-Channel PowerTrench[®] MOSFET 30 V, 2.8 m Ω

Features


- Max $r_{DS(on)}$ = 2.8 m Ω at V_{GS} = 10 V, I_D = 25 A
- Max $r_{DS(on)}$ = 3.5 m Ω at V_{GS} = 4.5 V, I_D = 19 A
- Advanced Package and Silicon combination for low r_{DS(on)} and high efficiency
- Next generation enhanced body diode technology, engineered for soft recovery. Provides Schottky-like performance with minimum EMI in sync buck converter applications
- MSL1 robust package design
- 100% UIL tested
- RoHS Compliant

General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency and to minimize switch node ringing of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low $r_{DS(on)}$, fast switching speed and body diode reverse recovery performance.

Applications

- IMVP Vcore Switching for Notebook
- VRM Vcore Switching for Desktop and Server
- OringFET / Load Switch
- DC-DC Conversion

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter			Ratings	Units	
V _{DS}	Drain to Source Voltage			30	V	
V _{GS}	Gate to Source Voltage		(Note 4)	±20	V	
ID	Drain Current -Continuous (Package limited)	T _C = 25 °C		42	A	
	-Continuous (Silicon limited)	T _C = 25 °C		144		
	-Continuous	T _A = 25 °C	(Note 1a)	25		
	-Pulsed			150		
E _{AS}	Single Pulse Avalanche Energy		(Note 3)	128	mJ	
P _D	Power Dissipation	T _C = 25 °C		78	W	
	Power Dissipation	T _A = 25 °C	(Note 1a)	2.5	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C		
Thermal Cl	haracteristics					
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction to Case		1.6	°C/W		
R _{θJA}	Thermal Resistance, Junction to Ambient		(Note 1a)	50	0/10	

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7660	FDMS7660	Power 56	13 "	12 mm	3000 units

©2009 Fairchild Semiconductor Corporation FDMS7660 Rev. D

April 2009

G

s

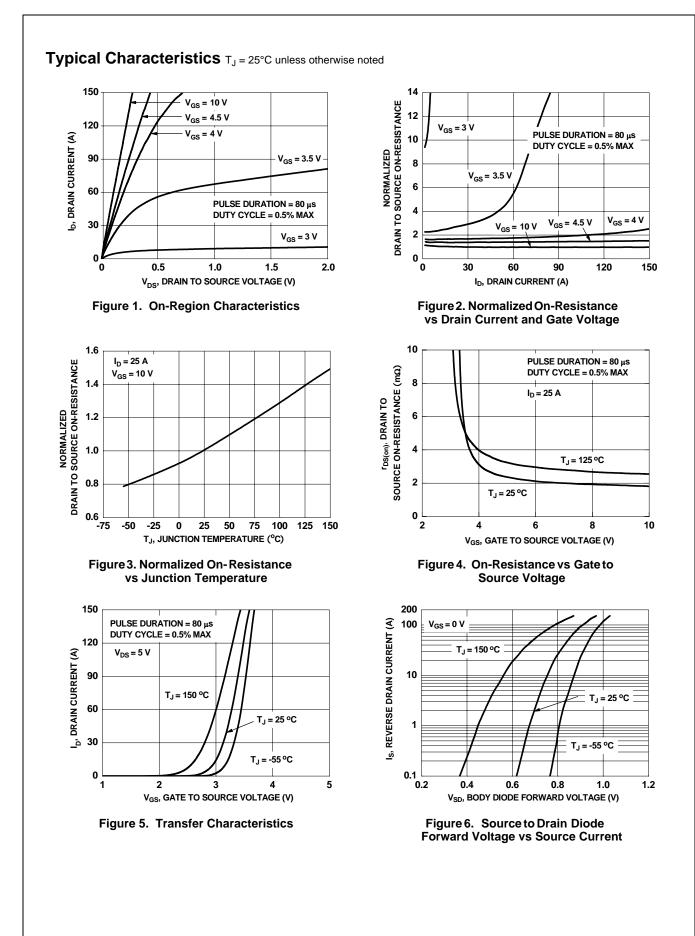
S

S

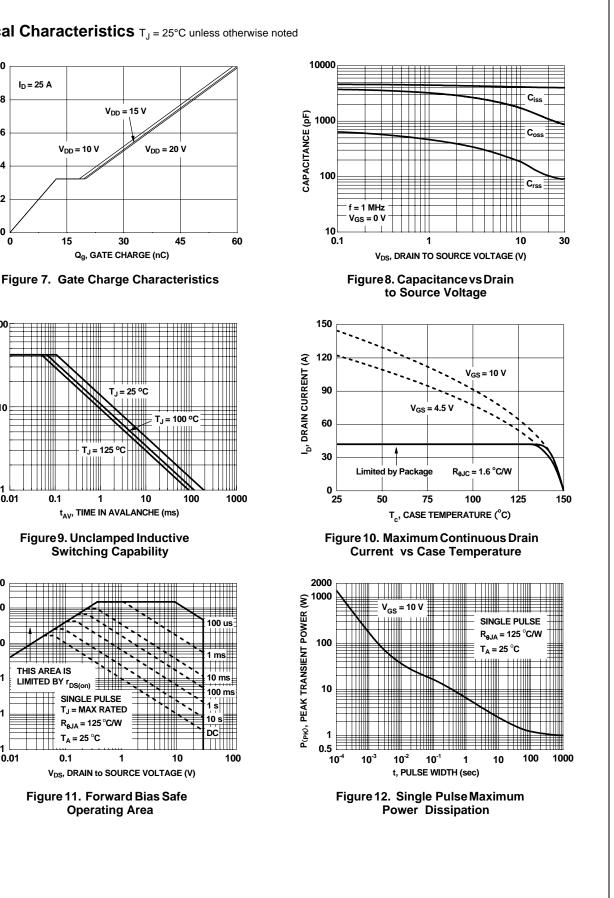
Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = 250 μA, V _{GS} = 0 V	30			V
ΔBV _{DSS} ΔT _J	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu\text{A}$, referenced to 25 °C		17		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V			1	μΑ
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$			100	nA
On Chara	cteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = 250 \ \mu A$	1.25	1.9	3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C		-7		mV/°C
		V _{GS} = 10 V , I _D = 25 A		1.9	2.8	<u> </u>
r _{DS(on)}	Static Drain to Source On Resistance	$V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 19 \text{ A}$		2.7	3.5	mΩ
		V _{GS} = 10 V, I _D = 25 A, T _J = 125 °C	C 2.5 3.7		3.7	1
9 _{FS}	Forward Transconductance	V _{DS} = 5 V, I _D = 25 A		250		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			4185	5565	pF
C _{oss}	Output Capacitance	$V_{DS} = 15 \text{ V}, \text{ V}_{GS} = 0 \text{ V},$		1380	1830	pF
C _{rss}	Reverse Transfer Capacitance	_f = 1 MHz		125	190	pF
R _q	Gate Resistance			0.9	2.0	Ω
	g Characteristics			47		
t _{d(on)}	Turn-On Delay Time			17	31	ns
t _r	Rise Time	V_{DD} = 15 V, I _D = 25A, V _{GS} = 10 V, R _{GEN} = 6 Ω		9	18	ns
t _{d(off)}	Turn-Off Delay Time Fall Time	$V_{\rm GS} = 10^{-10}$, $N_{\rm GEN} = 0.22$		37 7	60 13	ns
t _f	Total Gate Charge	V _{GS} = 0 V to 10 V		60	84	ns nC
Q _g	Total Gate Charge	$V_{GS} = 0 \text{ V to } 10 \text{ V}$ $V_{GS} = 0 \text{ V to } 4.5 \text{ V}$ $V_{DD} = 15 \text{ V},$		27	38	nC
Q _g Q _{gs}	Gate to Source Charge	$V_{DD} = 15 \text{ V},$ $I_{D} = 25 \text{ A}$		12.3	50	nC
<u>∝gs</u> Q _{gd}	Gate to Drain "Miller" Charge			7.2		nC
	urce Diode Characteristics					
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 2.1 A$ (Note 2)		0.7	0.95	V
		$V_{GS} = 0 \text{ V}, \text{ I}_{S} = 25 \text{ A}$ (Note 2)		0.8	1.1	
t _{rr}	Reverse Recovery Time			46	74	ns
Q _{rr}	Reverse Recovery Charge			26	42	nC
t _a	Reverse Recovery Fall Time	I _F = 25 A, di/dt = 100 A/μs		19		nC
t _b	Reverse Recovery Rise Time			27		nC
S	Softness (t _b /t _a)			1.4		
t _{rr}	Reverse Recovery Time	-I _F = 25 A, di/dt = 300 A/μs		36	58	ns
Q _{rr}	Reverse Recovery Charge	$F = 20 \text{ A}, \text{ u/ul} = 300 \text{ A/} \mu \text{S}$		43	68	nC

2. Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%.

3. E_{AS} of 128 mJ is based on starting T_J = 25 °C, L = 1 mH, I_{AS} = 16 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.3 mH, I_{AS} = 23 A.


As an N-ch device, the negative Vgs rating is for low duty cycle pulse occurrence only. No continuous rating is implied.
©2009 Fairchild Semiconductor Corporation
FDMS7660 Rev. D
2

Downloaded from Arrow.com.


a. 50 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 125 °C/W when mounted on a minimum pad of 2 oz copper.

00000

©2009 Fairchild Semiconductor Corporation FDMS7660 Rev. D

Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted

10

8

6

4

2

0

100

10

1 └─ 0.01

500

100

10

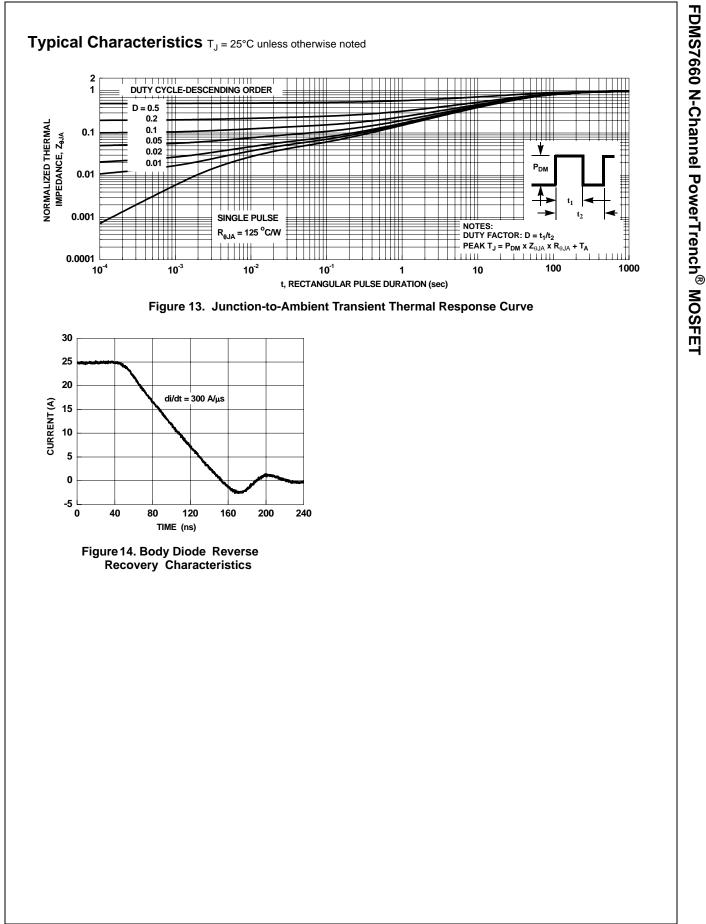
1

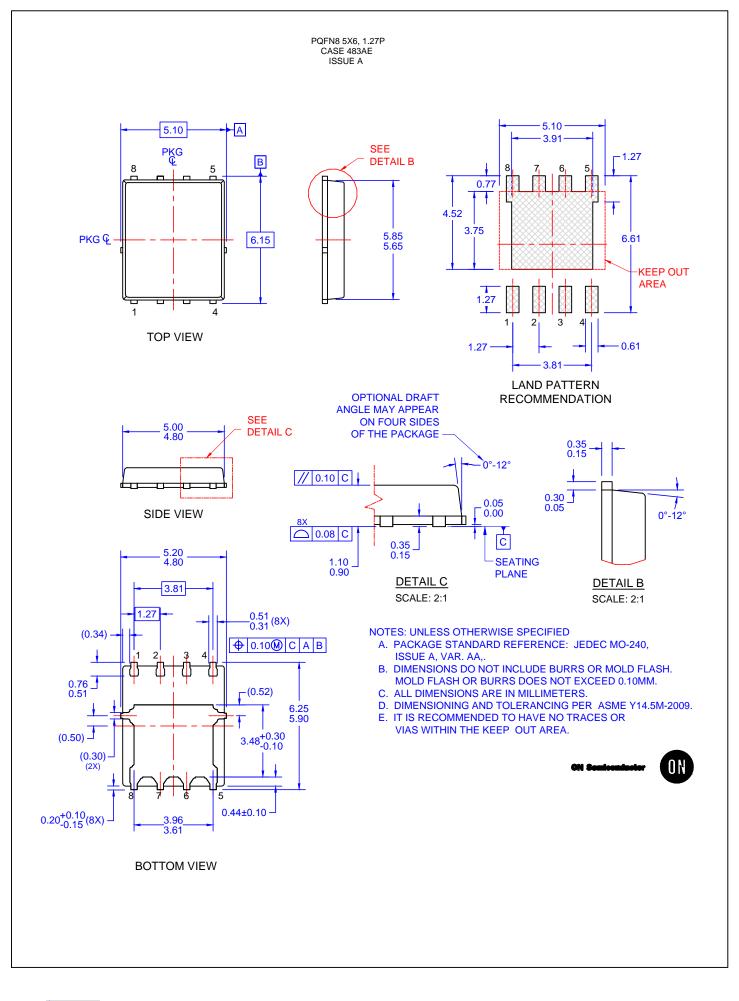
0.1

0.01

0.01

I_D, DRAIN CURRENT (A)


I_{AS}, AVALANCHE CURRENT (A)


0

V_{GS}, GATE TO SOURCE VOLTAGE (V)

©2009 Fairchild Semiconductor Corporation FDMS7660 Rev. D

FDMS7660 N-Channel PowerTrench[®] MOSFET

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.