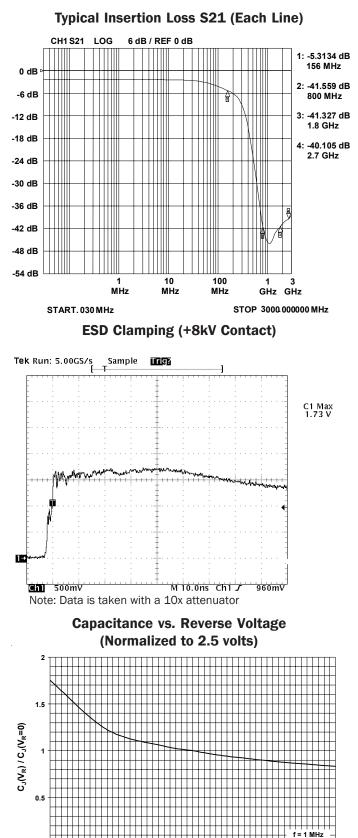
SEMTECH

PROTECTION PRODUCTS

Maximum Ratings

Rating	Symbol	Value	Units
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	+/- 20 +/- 15	kV
Junction Temperature	T,	125	°C
Operating Temperature	T _{op}	-40 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	°C

Electrical Characteristics (T=25°C)


	-				-	
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
TVS Reverse Stand-Off Voltage	V _{RWM}				5	V
TVS Reverse Breakdown Voltage	V _{BR}	I _t = 1mA	6	8	10	V
TVS Reverse Leakage Current	I _R	V _{RWM} = 3.3V			0.1	μA
DC Resistance	R _{DC}			33		Ohms
Filter Cut-Off Frequency	fc	$Z_{Source} = Z_{Load} = 50 \text{ Ohms}$		155		MHz
Inductance	L			28		nH
Total Series Inductance	$L_1 + L_2$	Each Line		56		nH
Capacitance	C_1 , C_2 , C_3	V _R = 2.5V, f = 1MHz	10	12	15	pF
Total Capacitance C ₁ +		Input to Gnd, Each Line V _R = 2.5V, f = 1MHz	30	36	45	рF

EClamp2458P

PROTECTION PRODUCTS

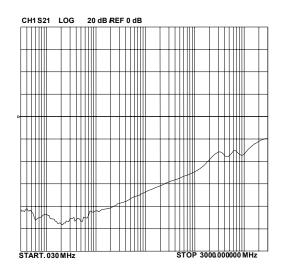
Typical Characteristics

2

1.5

2.5

Reverse Voltage - V_R (V)


3

3.5


4

4.5

Analog Crosstalk (Each Line)

ESD Clamping (-8kV Contact)

Note: Data is taken with a 10x attenuator

0.5

0

Downloaded from Arrow.com.

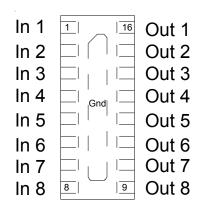
Applications Information

Device Connection

The EClamp2458P is comprised of eight identical circuits each consisting of a low pass filter for EMI/RFI suppression and dual TVS diodes for ESD protection. The device is in a 16-pin SLP package. Electrical connection is made to the 16 pins located at the bottom of the device. A center tab serves as the ground connection. The device has a flow through design for easy layout. Pin connections are noted in Figure 1. All path lengths should be kept as short as possible to minimize the effects of parasitic inductance in the board traces. Recommendations for the ground connection are given below.

Ground Connection Recommendation

Parasitic inductance present in the board layout will affect the filtering performance of the device. As frequency increases, the effect of the inductance becomes more dominant. This effect is given by Equation 1.


Equation 1: The Impedance of an Inductor at Frequency XLF

 $XLF(L, f) = 2 * \pi * f * L$

Where: L= Inductance (H) f = Frequency (Hz)

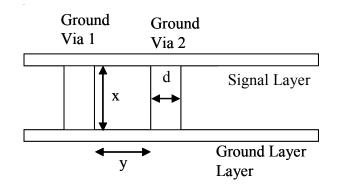

Via connections to the ground plane form rectangular wire loops or ground loop inductance as shown in Figure 2. Ground loop inductance can be reduced by using multiple vias to make the connection to the ground plane. Bringing the ground plane closer to the signal layer (preferably the next layer) also reduces ground loop inductance. Multiple vias in the device ground pad will result in a lower inductive ground loop over two exterior vias. Vias with a diameter d are separated by a distance y run between layers separated by a distance x. The inductance of the loop path is given by Equation 2. Thus, decreasing distance x and y will reduce the loop inductance and result in better high frequency filter characteristics.

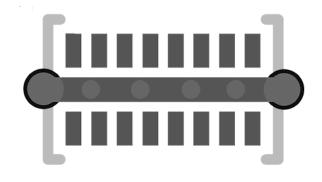
Figure 1 - Pin Identification and Configuration (Top Side View)

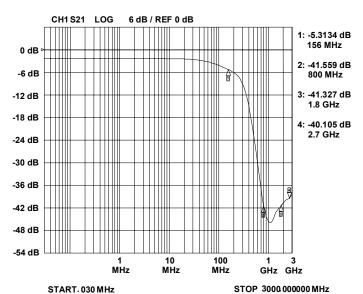
Pin	Identification
1 - 8	Input Lines
9 - 16	Output Lines
Center Tab	Ground

Equation 2: Inductance of Rectangular Wire Loop

LRECT(d, x, y) = 10.16 * 10⁻⁹ *
$$\left[x * \ln\left[\frac{2*y}{d}\right] + y * \ln\left[\frac{2*x}{d}\right]\right]$$

Where:


- d = Diameter of the wire (in)
- x = Length of wire loop (in)
- y = Breath of wire loop (in)



Applications Information

Figure 3 shows the recommended device layout. The ground pad vias have a diameter of 0.008 inches (0.20 mm) while the two external vias have a diameter of 0.010 inches (0.250mm). The internal vias are spaced approximately evenly from the center of the pad. The designer may choose to use more vias with a smaller diameter (such as 0.005 inches or 0.125mm) since changing the diameter of the via will result in little change in inductance (i.e. the log function in Equation 2 in highly insensitive to parameter d) . Figure 4 shows a typical insertion loss (S21) plot for the device using Semtech's filter evaluation board with 50 Ohm traces and the recommended via configuration.



Figure 4 - Filter Characteristics Using Recommended Layout with Internal Vias

Applications Information - Spice Model

EClamp2458P Spice Model & Parameters

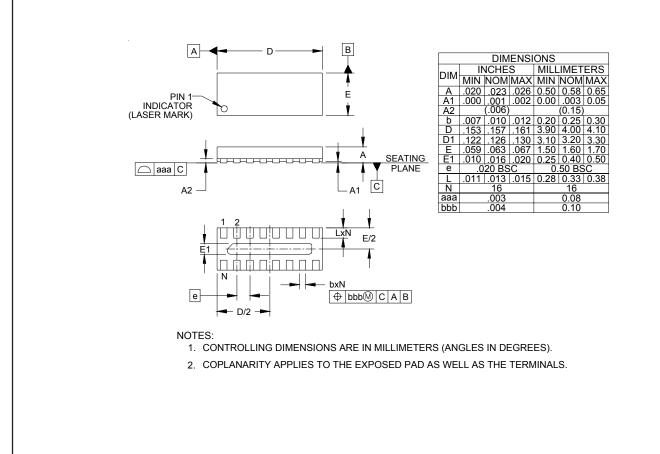
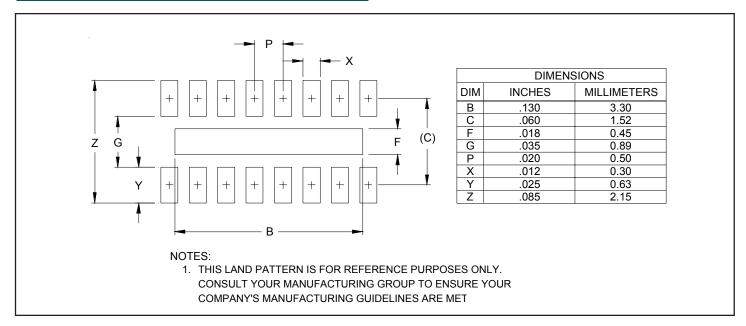
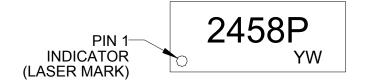


Table 1 - EClamp2458P Spice Parameters							
Parameter	Unit	D1 (TVS)	D2 (TVS)				
IS	Amp	4.09E-15	4.09E-15				
BV	Volt	7.44	7.44				
VJ	Volt	0.744	0.744				
RS	Ohm	0.584	0.584				
IBV	Amp	1E-3	1E-3				
CJO	Farad	31E-12	31E-12				
TT	sec	2.541E-9	2.541E-9				
М		0.23	0.23				
N		1.1	1.1				
EG	eV	1.11	1.11				

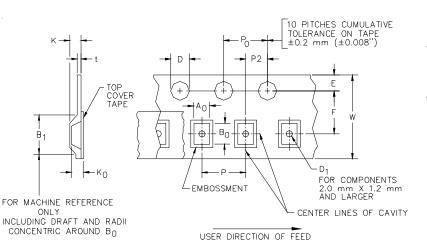


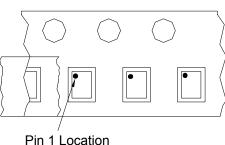
Outline Drawing - SLP4016P16



Land Pattern - SLP4016P16

Marking


Ordering Information


Part Number	Qty per Reel	Reel Size		
EClamp2458P.TCT	3000	7 Inch		

This is a lead-free RoHS/WEEE Compliant Device EMIClamp and EClamp are marks of Semtech Corporation

YW = Date Code (Y=Year, W=Week)

Tape and Reel Specification

User Direction of feed

Device Orientation in Tape

AO	В0	ко		
1.78 +/-0.10 mm	4.30 +/-0.10 mm	0.74 +/-0.10 mm		

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Ρ	PO	P2	T(MAX)	w
12 mm	8.2 mm (.476)	1.5 + 0.1 mm - 0.0 mm (0.59 +.005 000)	1.0 mm ±0.05 (.039)	1.750±.10 mm (.069±.004)	5.5±0.05 mm (.217±.002)	4.5 mm (.177)	4.0±0.1 mm (.157±.00- 4)	4.0±0.1 mm (.157±.00- 4)	2.0±0.05m- m (.079±.002)	0.4 mm (.016)	12.0 mm + 0.3 mm - 0.1 mm (.472±.012)

Contact Information

Semtech Corporation Protection Products Division 200 Flynn Rd., Camarillo, CA 93012 Phone: (805)498-2111 FAX (805)498-3804