IEEE 802.11 - IEEE 802.11 b/g/n RF/PHY/MAC SOC - IEEE 802.11 b/g/n (1x1) for up to 72Mbps PHY rate - Single spatial stream in 2.4GHz ISM band - Integrated PA and T/R switch - · Integrated chip antenna - Superior sensitivity and range via advanced PHY signal processing - Advanced equalization and channel estimation - Advanced carrier and timing synchronization - Wi-Fi Direct® and Soft-AP support - Supports IEEE 802.11 WEP, WPA, WPA2 security - Supports China WAPI security - Superior MAC throughput via hardware accelerated two-level A-MSDU/A-MPDU frame aggregation and block acknowledgement - On-chip memory management engine to reduce host load - SPI, SDIO, I2C, and UART host interfaces - Operating temperature range of -40 to +85°C fast boot options: - · Integrated flash memory for system software - SPI flash boot (firmware patches and state variables) - · Low-leakage on-chip memory for state variables - Fast AP re-association (150ms) - On-Chip Network Stack to offload MCU: - Integrated network IP stack to minimize host CPU requirements - Network features: TCP, UDP, DHCP, ARP, HTTP, SSL, and DNS # **Table of Contents** | 1 | Ord | dering Information | 5 | | | | | |-----|----------------|--|----|--|--|--|--| | 2 | Pac | ckage Information | 5 | | | | | | 3 | Blo | ock Diagram | 6 | | | | | | 4 | Pin | out Information | 7 | | | | | | 5 | Pov | wer Management | 10 | | | | | | | 5.1 | Power Consumption | 10 | | | | | | | | 5.1.1 Description of Device States | 10 | | | | | | | | 5.1.2 Controlling the Device States | 10 | | | | | | | 5.2 | Power-Up/Down Sequence | | | | | | | | 5.3 | Digital I/O Pin Behavior During Power-Up Sequences | 12 | | | | | | 6 | Clo | ocking | 13 | | | | | | | 6.1 | Crystal Oscillation | 13 | | | | | | | 6.2 | Low Power Oscillator | 13 | | | | | | 7 | СР | U and Memory Subsystem | 14 | | | | | | | 7.1 | Processor | 14 | | | | | | | 7.2 | Memory Subsystem | 14 | | | | | | | 7.3 | Non-Volatile Memory | 14 | | | | | | 8 | WLAN Subsystem | | | | | | | | | 8.1 | MAC | 16 | | | | | | | | 8.1.1 Features | 16 | | | | | | | | 8.1.2 Description | 16 | | | | | | | 8.2 | | | | | | | | | | 8.2.1 Features | | | | | | | | | 8.2.2 Description | 17 | | | | | | 9 | Ele | ctrical Characteristics | | | | | | | | 9.1 | Absolute Maximum Ratings | | | | | | | | 9.2 | Recommended Operating Conditions | | | | | | | | 9.3 | DC Characteristics | | | | | | | | 9.4 | 802.11 b/g/n Radio Performance | | | | | | | | | 9.4.1 Receiver Performance | | | | | | | | 0.5 | 9.4.2 Transmitter Performance | | | | | | | | 9.5 | 9.5.1 Receiver Performance | | | | | | | | | 9.5.2 Transmitter Performance | | | | | | | 10 | Fxt | ternal Interfaces | 23 | | | | | | . • | | I I ² C Slave Interface | | | | | | | | | 10.1.1 Description | | | | | | | | | 10.1.2 I ² C Slave Timing | | | | | | | | 10.2 | 2 I ² C Master Interface | | | | | | | 8 | | 10.2.1 Description | | | | | | | | | 10.2.2 I ² C Master Timing | 25 | | | | | | | 10.3 SPI Slave Interface | 25 | |----|---------------------------|----| | | 10.3.1 Description | 25 | | | 10.3.2 SPI Slave Modes | | | | 10.3.3 SPI Slave Timing | 27 | | | 10.4 SPI Master Interface | 28 | | | 10.4.1 Description | 28 | | | 10.4.2 SPI Master Timing | | | | 10.5 SDIO Slave Interface | | | | 10.5.1 Features | 29 | | | 10.5.2 Description | 29 | | | 10.5.3 SDIO Timing | 30 | | | 10.6 UART Interface | | | | 10.7 PCM Interface | | | | 10.8 GPIOs | 32 | | 1 | Reference Design | 33 | | 2 | Package Drawing | 37 | | 13 | Revision History | 40 | # 1 Ordering Information | Ordering code | Package | Description | | |--------------------|------------|--------------------|--| | ATWINC3400-MR210CA | 22 x 15 mm | With chip antenna | | | ATWINC3400-MR210UA | 22 x 15 mm | With uFL connector | | # 2 Package Information Table 2-1. ATWINC3400-MR210 Package Information (1) | Parameter | Value | Units | Tolerance | |--------------------|-------------------|-------|-----------| | Package Size | 22.3774 x 14.7320 | mm | | | Pad Count | 36 | | | | Total Thickness | 2.0874 | mm | | | Pad Pitch | 1.2040 | mm | | | Pad Width | 0.8128 | mm | | | Ground Paddle Size | 4.1 x 4.1 | mm | | Note: 1. For details, see Chapter 12 - Package Drawing on page 37. # 3 Block Diagram Figure 3-1. ATWINC3400-MR210 Block Diagram # 4 Pinout Information This package has an exposed paddle that must be connected to the system board ground. The module pin assignment is shown in Figure 4-1. The ATWINC3400-MR210 pins are described in Table 4-1. Figure 4-1. ATWINC3400-MR210 Pin Assignment Table 4-1. ATWINC3400-MR210 Pin Description | Pin # | Pin name | Pin type | Description | |-------|------------------|---|--| | J1 | GND | GND | Ground | | J2 | SDIO/SPI CFG | Digital Input | Tie to VDDIO for SPI and GND for SDIO | | J3 | N/C | None | No connect | | J4 | N/C | None | No connect | | J5 | N/C | None | No connect | | J6 | N/C | None | No connect | | J7 | RESETN | Digital Input | Active-Low Hard Reset | | J8 | BT_TXD | Digital I/O, Programmable Pull-Up | GPIO_16/Bluetooth UART Transmit Data Output | | J9 | BT_RXD | Digital I/O, Programmable Pull-Up | GPIO_15/Bluetooth UART Receive Data Input | | J10 | BT_RTS | Digital I/O, Programmable Pull-Up | GPIO_14/Bluetooth UART RTS output/I ² C Slave Data | | J11 | BT_CTS | Digital I/O, Programmable Pull-Up | GPIO_13/Bluetooth UART CTS Input/I ² C Slave Clock/Wi-Fi [®] UART TXD Output | | J12 | VDDIO | Power | Digital I/O Power Supply | | J13 | GND | GND | Ground | | J14 | GPIO3 | Digital I/O, Programmable Pull-Up | GPIO_3/SPI Flash Clock Output | | J15 | GPIO4 | Digital I/O, Programmable Pull-Up | GPIO_4/SPI Flash SSN Output | | J16 | UART_TXD | Digital I/O, Programmable Pull-Up | GPIO_5/Wi-Fi UART TXD Output/SPI Flash TX Output (MOSI) | | J17 | UART_RXD | Digital I/O, Programmable Pull-Up | GPIO_6/Wi-Fi UART RXD Input/SPI Flash RX Input (MISO) | | J18 | VBAT | Power | Battery Supply for DC/DC Converter AND PA | | J19 | CHIP_EN | Analog | PMU Enable | | J20 | RTC_CLK | Digital I/O, Programmable Pull-Up | RTC Clock Input/GPIO_1/Wi-Fi UART RXD Input/Wi-Fi UART TXD Output/BT UART CTS Input | | J21 | GND | GND | Ground | | J22 | SD_CLK/GPIO8 | Digital I/O, Programmable Pull-Up | SDIO Clock/GPIO_8/Wi-Fi UART RXD Input/BT UART CTS Input | | J23 | SD_CMD/SPI_SCK | Digital I/O, Programmable Pull-Up | SDIO Command/SPI Clock | | J24 | SD_DAT0/SPI_MISO | Digital I/O, Programmable Pull-Up | SDIO Data0/SPI TX Data | | J25 | SD_DAT1/SPI_SSN | Digital I/O, Programmable Pull-Up | SDIO Data1/SPI Slave Select | | J26 | SD_DAT2/SPI_MOSI | Digital I/O, Programmable Pull-Up | SDIO Data2/SPI RX Data | | J27 | SD_DAT3/GPIO7 | Digital I/O, Programmable Pull-Up | SDIO Data3/GPIO_7/Wi-Fi UART TXD output/BT UART RTS Output | | J28 | GND | GND | Ground | | J29 | GPIO17 | Digital I/O, Programmable Pull-
Down | GPIO_17/Bluetooth PCM CLOCK | | Pin # | Pin name | Pin type | Description | |-------|------------|---|---| | J30 | GPIO18 | Digital I/O, Programmable Pull-
Down | GPIO_18/Bluetooth PCM SNYC | | J31 | GPIO19 | Digital I/O, Programmable Pull-
Down | GPIO_19/Bluetooth PCM Data Input | | J32 | GPIO20 | Digital I/O, Programmable Pull-
Down | GPIO_20/Bluetooth PCM Data Output | | J33 | IRQN | Digital I/O, Programmable Pull-Up | Host Interrupt Request Output/Wi-Fi UART RXD Input/BT UART RTS Output | | J34 | I2C_SDA_M | Digital I/O, Programmable Pull-Up | GPIO_21/RTC Clock/Wi-Fi UART RXD Input/Wi-Fi UART TXD Output/BT UART RTS Output | | J35 | I2C_SDA_M | Digital I/O, Programmable Pull-Up | SLEEP Mode Control/Wi-Fi UART TXD output | | J36 | GND | GND | Ground | | J49 | PADDLE VSS | Power | Connect to System Board Ground | # 5 Power Management ## 5.1 Power Consumption ### 5.1.1 Description of Device States ATWINC3400-MR210 has multiple device states, depending on the state of the 802.11 and Bluetooth subsystems. It is possible for both subsystems to be active at the same time. To simplify the device power consumption breakdown, the following basic states are defined, for which only one subsystem can be active at a time: WiFi_ON_Transmit - Device is actively transmitting an 802.11 signal WiFi_ON_Receive - Device is actively receiving an 802.11 signal BT_ON_Transmit - Device is actively transmitting a Bluetooth signal BT_ON_Receive - Device is actively receiving a Bluetooth signal Doze - Device is neither transmitting nor receiving (device state is retained) Power_Down Device is powered down with CHIP_EN low and supplies connected ### 5.1.2 Controlling the Device States Table 5-1 shows how to switch between the device states using the following: CHIP_EN - Module pad #19 used to enable DC/DC Converter VDDIO - I/O supply voltage from external supply Table 5-1. ATWINC3400-MR210 Device States | Device state | CHIP_EN | VDDIO | Power consumption | | Remarks | |------------------|---------|-------|-------------------|--------|---------------------------| | Device State | CHIP_EN | VDDIO | IVBATT | Ivddio | Remarks | | WiFi_ON_Transmit | VDDIO | On | <250mA | <2.5mA | Output power = 14 - 15dBm | | WiFi_ON_Receive | VDDIO | On | <86mA | <2.5mA | | | BT_ON_Transmit | VDDIO | On | | | | | BT_ON_Receive | VDDIO | On | <45mA | <2.5mA | | | Doze | VDDIO | On | <0.65mA | <7µA | | | Power_Down | GND | On | <0.5µA | <0.1µA | | When no power is supplied to the device (the DC/DC Converter output and VDDIO are both off and at ground potential) a voltage cannot be applied to the ATWINC3400-MR210 pins because each pin contains an ESD diode from the pin to supply. This diode will turn on when voltage higher than one diode-drop is supplied to the pin. If a voltage must be applied to the signal pads while the chip is in a low power state, the VDDIO supply must be on,
so the Power_Down state must be used. Similarly, to prevent the pin-to-ground diode from turning on, do not apply a voltage that is more than one diode-drop below ground to any pin. # 5.2 Power-up/down Sequence The power-up/down sequence for ATWINC3400-MR210 is shown in Figure 5-1. The timing parameters are provided in Table 5-2. Figure 5-1. ATWINC3400-MR210 Power-up/down Sequence Table 5-2. ATWINC3400-MR210 Power-up/down Sequence Timing | Parameter | Min. | Max. | Unit | Description | Notes | |-----------------|------|------|------|--------------------------------|---| | tA | 0 | | ms | VBATT rise to VDDIO rise | VBATT and VDDIO can rise simultaneously or can be tied together. VDDIO must not rise before VBATT. | | t _B | 0 | | ms | VDDIO rise to CHIP_EN rise | CHIP_EN must not rise before VDDIO. CHIP_EN must be driven high or low, not left floating. | | tc | 5 | | ms | CHIP_EN rise to
RESETN rise | This delay is needed because XO clock must stabilize before RESETN removal. RESETN must be driven high or low, not left floating. | | t _{A'} | 0 | | ms | VDDIO fall to VBATT fall | VBATT and VDDIO can fall simultaneously or can be tied together. VBATT must not fall before VDDIO. | | t _{B'} | 0 | | ms | CHIP_EN fall to VDDIO fall | VDDIO must not fall before CHIP_EN. CHIP_EN and RESETN can fall simultaneously. | | tc [,] | 0 | | ms | RESETN fall to VDDIO fall | VDDIO must not fall before RESETN. RESETN and CHIP_EN can fall simultaneously. | # 5.3 Digital I/O Pin Behavior During Power-up Sequences Table 5-3 represents digital I/O Pin states corresponding to device power modes. Table 5-3. Digital I/O Pin Behavior in Different Device States | Device state | VDDIO | CHIP_EN | RESETN | Output driver | Input driver | Pull up/down
resistor (96kΩ) | |---|-------|---------|--------|---|---------------------------------------|--| | Power_Down:
core supply off | High | Low | Low | Disabled (Hi-Z) | Disabled | Disabled | | Power-On Reset:
core supply on, hard reset on | High | High | Low | Disabled (Hi-Z) | Disabled | Enabled | | Power-On Default:
core supply on, device out of
reset but not programmed yet | High | High | High | Disabled (Hi-Z) | Enabled | Enabled | | On_Doze/On_Transmit/
On_Receive:
core supply on, device
programmed by firmware | High | High | High | Programmed by
firmware for
each pin: Ena-
bled or Disabled | Opposite of
Output Driver
state | Programmed by firm-
ware for each pin:
Enabled or Disabled | # 6 Clocking # 6.1 Crystal Oscillation Table 6-1. ATWINC3400-MR210 Crystal Oscillator Parameters | Parameter | Min. | Тур. | Max. | Unit | |--------------------------------------|------|------|------|------| | Crystal Resonant Frequency | | 26 | | MHz | | Crystal Equivalent Series Resistance | | 50 | 150 | Ω | | Stability - Initial Offset (1) | -100 | | 100 | ppm | | Stability - Temperature and Aging | -25 | | 25 | ppm | Note: 1. Initial offset must be calibrated to maintain ±25ppm in all operating conditions. This calibration is performed during final production testing. The block diagram in Figure 6-1 shows the internal crystal oscillator circuit that is contained within the module. Figure 6-1. Internal Crystal Oscillator Circuit, block diagram # 6.2 Low Power Oscillator ATWINC3400-MR210 requires an external 32.768kHz clock to be used for sleep operation, which is provided through pin J20. The frequency accuracy of the external clock has to be within ±200ppm. # 7 CPU and Memory Subsystem ## 7.1 Processor ATWINC3400-MR210 has a Cortus APS3 32-bit processor. In 802.11 mode the processor performs many of the MAC functions, including but not limited to association, authentication, power management, security key management, and MSDU aggregation/de-aggregation. In addition, the processor provides flexibility for various modes of operation, such as STA and AP modes. In Bluetooth mode the processor handles multiple tasks of the Bluetooth protocol stack. # 7.2 Memory Subsystem The APS3 core uses a 256KB instruction/boot ROM (160KB for 802.11 and 96KB for Bluetooth) along with a 420KB instruction RAM (128KB for 802.11 and 292KB for Bluetooth), and a 128KB data RAM (64KB for 802.11 and 64KB for Bluetooth). ATWINC3400 also has 8Mb of flash memory, which can be used for system software. In addition, the device uses a 160KB shared/exchange RAM (128KB for 802.11 and 32KB for Bluetooth), accessible by the processor and MAC, which allows the processor to perform various data management tasks on the TX and RX data packets # 7.3 Non-Volatile Memory ATWINC3400-MR210 has 768 bits of non-volatile eFuse memory that can be read by the CPU after device reset. This non-volatile one-time-programmable memory can be used to store customer-specific parameters, such as 802.11 MAC address, Bluetooth address, various calibration information, such as TX power, crystal frequency offset, etc., as well as other software-specific configuration parameters. The eFuse is partitioned into six 128-bit banks. The bit map of the first and last banks is shown in Figure 7-1. The purpose of the first 80 bits in bank 0 and the first 56 bits in bank 5 is fixed, and the remaining bits are general-purpose software dependent bits, or reserved for future use. Since each bank and each bit can be programmed independently, this allows for several updates of the device parameters following the initial programming, e.g. updating 802.11 MAC address or Bluetooth address (this can be done by invalidating the last programmed bank and programming a new bank). Refer to ATWINC3400-MR210 Programming Guide for the eFuse programming instructions. Figure 7-1. ATWINC3400-MR210 eFuse Bit Map # 8 WLAN Subsystem The WLAN subsystem is composed of the Media Access Controller (MAC) and the Physical Layer (PHY). Sections 8.1 and 8.2 describe the MAC and PHY in detail. ### 8.1 MAC ### 8.1.1 Features The ATWINC3400-MR210 IEEE802.11 MAC supports the following functions: - IEEE 802.11b/g/n - IEEE 802.11e WMM® QoS EDCA/HCCA/PCF multiple access categories traffic scheduling - Advanced IEEE 802.11n features: - Transmission and reception of aggregated MPDUs (A-MPDU) - Transmission and reception of aggregated MSDUs (A-MSDU) - Immediate Block Acknowledgement - Reduced Interframe Spacing (RIFS) - Support for IEEE 802.11i and WFA security with key management - WEP 64/128 - WPA-TKIP - 128-bit WPA2 CCMP (AES) - Support for WAPI security - Advanced power management - Standard 802.11 Power Save Mode - Wi-Fi Alliance® WMM-PS (U-APSD) - RTS-CTS and CTS-self support - Supports either STA or AP mode in the infrastructure basic service set mode - Supports independent basic service set (IBSS) ## 8.1.2 Description The ATWINC3400-MR210 MAC is designed to operate at low power while providing high data throughput. The IEEE 802.11 MAC functions are implemented with a combination of dedicated datapath engines, hardwired control logic, and a low-power, high-efficiency microprocessor. The combination of dedicated logic with a programmable processor provides optimal power efficiency and real-time response while providing the flexibility to accommodate evolving standards and future feature enhancements. Dedicated datapath engines are used to implement data path functions with heavy computational. For example, an FCS engine checks the CRC of the transmitting and receiving packets, and a cipher engine performs all the required encryption and decryption operations for the WEP, WPA-TKIP, WPA2 CCMP-AES, and WAPI security requirements. Control functions, which have real-time requirements are implemented using hardwired control logic modules. These logic modules offer real-time response while maintaining configurability via the processor. Examples of hardwired control logic modules are the channel access control module (implements EDCA/HCCA, Beacon TX control, interframe spacing, etc.), protocol timer module (responsible for the Network Access Vector, back-off timing, timing synchronization function, and slot management), MPDU handling module, aggregation/de-aggregation module, block ACK controller (implements the protocol requirements for burst block communication), and TX/RX control FSMs (coordinate data movement between PHY-MAC interface, cipher engine, and the DMA interface to the TX/RX FIFOs). The MAC functions implemented solely in software on the microprocessor have the following characteristics: - Functions with high memory requirements or complex data structures. Examples are association table management and power save queuing. - Functions with low computational load or without critical real-time requirements. Examples are authentication and association. - Functions which need flexibility and upgradeability. Examples are beacon frame processing and QoS scheduling. ### 8.2 PHY ### 8.2.1 Features The ATWINC3400-MR210 IEEE 802.11 PHY supports the following functions: - Single antenna 1x1 stream in 20MHz channels - Supports IEEE 802.11b DSSS-CCK modulation: 1, 2, 5.5, 11Mbps - Supports IEEE 802.11g OFDM modulation: 6, 9, 12,18, 24, 36, 48, 54Mbps - Supports IEEE 802.11n HT modulations MCS0-7, 20MHz, 800 and 400ns guard interval: 6.5, 7.2, 13.0, 14.4, 19.5, 21.7, 26.0, 28.9, 39.0, 43.3, 52.0, 57.8, 58.5, 65.0, 72.2Mbps - IEEE 802.11n mixed mode operation - Per packet TX power control - Advanced channel estimation/equalization, automatic gain control, CCA, carrier/symbol recovery, and frame detection ## 8.2.2 Description The ATWINC3400-MR210 WLAN PHY is designed to achieve reliable and power-efficient physical layer communication specified by IEEE 802.11 b/g/n in single stream mode with 20MHz bandwidth. Advanced algorithms have been
employed to achieve maximum throughput in a real world communication environment with impairments and interference. The PHY implements all the required functions such as FFT, filtering, FEC (Viterbi decoder), frequency and timing acquisition and tracking, channel estimation and equalization, carrier sensing and clear channel assessment, as well as the automatic gain control. #### **Electrical Characteristics** 9 #### 9.1 **Absolute Maximum Ratings** Table 9-1. ATWINC3400-MR210 Absolute Maximum Ratings | Symbol | Characteristics | Min. | Max. | Unit | |--------------------------------|----------------------------|-----------------------------------|-----------------------------------|------| | VDDIO | Digital I/O Supply Voltage | -0.3 | 5.0 | V | | VBATT | Battery Supply Voltage | -0.3 | 5.0 | V | | V _{IN} ⁽¹⁾ | Digital Input Voltage | -0.3 | VDDIO | V | | V _{AIN} (2) | Analog Input Voltage | -0.3 | 1.5 | V | | Vesdhbm (3) | ESD Human Body Model | -1000, -2000
(see notes below) | +1000, +2000
(see notes below) | V | | TA | Storage Temperature | -65 | 150 | °C | | | Junction Temperature | | 125 | °C | | | RF input power max. | | 23 | dBm | - Notes: 1. V_{IN} corresponds to all the digital pins. - 2. V_{AIN} corresponds to the following analog pins: - 3. For V_{ESDHBM}, each pin is classified as Class 1, or Class 2, or both: - The Class 1 pins include all the pins (both analog and digital) - The Class 2 pins include all digital pins only - VESDHBM is ±1kV for Class1 pins. VESDHBM is ±2kV for Class2 pins #### 9.2 **Recommended Operating Conditions** Table 9-2. **ATWINC3400-MR210 Recommended Operating Conditions** | Symbol | Characteristics | Min. | Тур. | Max. | Unit | |------------------------|-------------------------------|---------|------|------|------| | VDDIO _L (2) | I/O Supply Voltage Low Range | 1.62 | 1.80 | 2.00 | V | | VDDIO _M (2) | I/O Supply Voltage Mid Range | 2.00 | 2.50 | 3.00 | V | | VDDIO _H (2) | I/O Supply Voltage High Range | 3.00 | 3.30 | 3.60 | V | | VBATT (3) | Battery Supply Voltage | 2.5 (4) | 3.60 | 4.20 | V | | | Operating Temperature | -40 | | 85 | °C | - Notes: 1. Battery supply voltage is applied to following pins: VBAT. - 2. ATWINC3400-MR210 is functional across this range of voltages; however, optimal RF performance is guaranteed for VBATT in the range 3.0V < VBATT < 4.2V. #### 9.3 **DC Characteristics** Error! Reference source not found. provides the DC characteristics for the ATWINC3400-MR210 digital pads. Table 9-3. ATWINC3400-MR210 DC Electrical Characteristics | VDDIO condition | Characteristics | Min. | Max. | Unit | |--------------------|------------------------------------|-------------|-------------------------|------| | VEDIO | Input Low Voltage V _{IL} | -0.30 | 0.60 | V | | | Input High Voltage V _{IH} | VDDIO-0.60 | VDDIO+0.30 | V | | VDDIO _L | Output Low Voltage VoL | | 0.45 | V | | | Output High Voltage Voн | VDDIO-0.50 | | V | | | Input Low Voltage V _{IL} | -0.30 | 0.63 | V | | VDDIO _M | Input High Voltage V _{IH} | VDDIO-0.60 | VDDIO+0.30 | V | | VDDIOM | Output Low Voltage VoL | | 0.45 | V | | | Output High Voltage Voн | VDDIO-0.50 | | V | | | Input Low Voltage V _{IL} | -0.30 | 0.65 | V | | VDDIO _H | Input High Voltage V _{IH} | VDDION-0.60 | VDDIO+0.30 (up to 3.60) | V | | VDDIOH | Output Low Voltage VoL | | 0.45 | V | | | Output High Voltage Voн | VDDIO-0.50 | | V | | All | Output Loading | | 20 | pF | | All | Digital Input Load | | 6 | pF | # 9.4 802.11 b/g/n Radio Performance ## 9.4.1 Receiver Performance Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; Temp.: 25°C Table 9-4. ATWINC3400-MR210 802.11 Conducted Receiver Performance Nominal Conditions, 50Ω load/source | Parameter | Description | Min. | Тур. | Max. | Unit | |------------------------------|---------------------------------|-------|-------|-------|------| | Frequency | | 2,412 | | 2,484 | MHz | | | 1Mbps DSS | | -98.0 | | dBm | | Sensitivity 802.11b | 2Mbps DSS | | -95.0 | | dBm | | | 5.5Mbps DSS | | -93.0 | | dBm | | | 11Mbps DSS | | -89.0 | | dBm | | | 6Mbps OFDM | | -90.6 | | dBm | | | 9Mbps OFDM | | -89.0 | | dBm | | | 12Mbps OFDM | | -87.9 | | dBm | | One of the street COO AA m | 18Mbps OFDM | | -86.0 | | dBm | | Sensitivity 802.11g | 24Mbps OFDM | | -83.0 | | dBm | | | 36Mbps OFDM | | -79.8 | | dBm | | | 48Mbps OFDM | | -76.0 | | dBm | | | 54Mbps OFDM | | -74.3 | | dBm | | | MCS 0 | | -89.0 | | dBm | | | MCS 1 | | -86.9 | | dBm | | | MCS 2 | | -84.9 | | dBm | | Sensitivity 802.11n | MCS 3 | | -82.4 | | dBm | | (BW=20MHz) | MCS 4 | | -79.2 | | dBm | | | MCS 5 | | -75.0 | | dBm | | | MCS 6 | | -73.2 | | dBm | | | MCS 7 | | -71.2 | | dBm | | | 1-11Mbps DSS | -10 | 5 | | dBm | | Maximum Receive Signal Level | 6-54Mbps OFDM | -10 | -3 | | dBm | | | MCS 0 - 7 | -10 | -3 | | dBm | | | 1Mbps DSS (30MHz offset) | | 50 | | dB | | | 11Mbps DSS (25MHz offset) | | 43 | | dB | | Adjacent Channel Rejection | 6Mbps OFDM (25MHz offset) | | 40 | | dB | | Aujacent Channel Rejection | 54Mbps OFDM (25MHz offset) | | 25 | | dB | | | MCS 0 – 20MHz BW (25MHz offset) | | 40 | | dB | | | MCS 7 – 20MHz BW (25MHz offset) | | 20 | | dB | #### 9.4.2 **Transmitter Performance** Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; Temp.: 25°C Table 9-5. ATWINC3400-MR210 802.11 Transmitter Performance Nominal Conditions, 50Ω load/source | Parameter | Description | Min. | Тур. | Max. | Unit | |---------------------|-----------------------|-------|---------------------|-------|---------| | Frequency | | 2.412 | | 2,484 | MHz | | Output Power | 802.11b DSSS 1-11Mbps | | 20 (1) | | dBm | | | 802.11g OFDM 6-54Mbps | | 17.0 ⁽¹⁾ | | dBm | | | 802.11n HT20 MCS 0-7 | | 16 ⁽¹⁾ | | dBm | | TX Power Accuracy | | | ±1.5 ⁽²⁾ | | dB | | Carrier Suppression | | | 30.0 | | dBc | | Harmonic Output | 2 nd | | -33 | | dBm/MHz | | Power | 3 _{rd} | | -38 | | dBm/MHz | - Notes: 1. Measured at 802.11 spec. compliant EVM/Spectral Mask. - Without calibration. #### 9.5 Bluetooth Low Energy (BLE) 4.0 The Bluetooth subsystem implements all the mission critical real-time functions. It encodes/decodes HCI packets, constructs baseband data packages and manages and monitors connection status, slot usage, data flow, routing, segmentation, and buffer control. The Bluetooth subsystem supports Bluetooth Low Energy (BLE) modes of operation. Supports BLE profiles allowing connection to advanced low energy application such as: - Smart Energy - Consumer Wellness - Home Automation - Security - **Proximity Detection** - Entertainment - Sports and Fitness - Automotive #### 9.5.1 **Receiver Performance** Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; Temp.: 25°C **Table 9-6.** ATWINC3400-MR210 Bluetooth Receiver Performance Nominal Conditions, 50Ω load/source | Parameter | Description | Min. | Тур. | Max. | Unit | |------------------------------|-------------|-------|------|-------|------| | Frequency | | 2,402 | | 2,480 | MHz | | Sensitivity Ideal TX | BLE (GFSK) | | -96 | | dBm | | Maximum Receive Signal Level | BLE (GFSK) | -10 | 0 | | dBm | ## 9.5.2 Transmitter Performance Radio performance under typical conditions: VBATT = 3.3V; VDDIO = 3.3V; Temp.: 25°C Table 9-7. ATWINC3400-MR210 Bluetooth Transmitter Performance Nominal Conditions, 50Ω load/source | Parameter | Description | Min. | Тур. | Max. | Unit | |--------------|-------------|-------|------|-------|------| | Frequency | | 2,402 | | 2,480 | MHz | | Output Power | BLE (GFSK) | | | 4 | dBm | Note: Maximum output power is +20dBm but spurious emission spec is not guaranteed. # 10 External Interfaces ATWINC3400-MR210 external interfaces include: SPI Slave, SDIO Slave, and UART for 802.11 control and data transfer; UART for Bluetooth control, data transfer, and audio; PCM for Bluetooth audio; I²C Slave for control; SPI Master for external Flash; I²C Master for external EEPROM, and General Purpose Input/Output (GPIO) pins. With the exception of the SPI Slave and SDIO Slave host interfaces, which are selected using the dedicated SDIO_SPI_CFG pin, the other interfaces can be assigned to various pins by programming the corresponding pin MUXing control register for each pin to a specific value between 0 and 6.The default values of these registers are 0, which is GPIO mode. Each digital I/O pin also has a programmable pull-up or pull-down. The summary of the available interfaces and their corresponding pin MUX settings is shown in Table 10-1. For specific programming instructions, refer to ATWINC3400-MR210 Programming Guide. Table 10-1. ATWINC3400-MR210 Pin-MUX Matrix of External Interfaces | Pin name | Pin # | Pull | Mux0 | MUX1 | MUX2 | MUX3 | MUX4 | MUX5 | MUX6 | |-----------------|-------|------|---------|-----------------|------------|-----------------|-----------------|----------------|-------------------| | GPIO16 | J8 | Up | GPIO_16 | O_BT_UART1_TXD | | | | | | | GPIO15 | J9 | Up | GPIO_15 | I_BT_UART1_RXD | | | | | | | GPIO14 | J10 | Up | GPIO_14 | O_BT_UART1_RTS | IO_I2C_SDA | | | | I_WAKEUP | | GPIO13 | J11 | Up | GPIO_13 | I_BT_UART1_CTS | IO_I2C_SCL | O_WIFI_UART_TXD | | | I_WAKEUP | | GPIO3 | J23 | Up | GPIO_3 | O_SPI_SCK_FLASH | | | | | O_BT_UART2_TXD | | GPIO4 | J25 | Up | GPIO_4 | O_SPI_SSN_FLASH | | | | | I_BT_UART2_RXD | | GPIO5 | J24 | Up | GPIO_5 | O_SPI_TXD_FLASH | | O_WIFI_UART_TXD | | | I_WAKEUP | | GPIO6 | J25 | Up | GPIO_6 | I_SPI_RXD_FLASH | | I_WIFI_UART_RXD | | | I_WAKEUP | | RTC_CLK | J20 | Up | GPIO_1 | I_RTC_CLK | | I_WIFI_UART_RXD | O_WIFI_UART_TXD | I_BT_UART1_CTS | | | SD_CLK | J22 | Up | GPIO_8 | I_SD_CLK | | I_WIFI_UART_RXD | I_BT_UART1_CTS | | | | SD_CMD/SPI_SCK | J23 | Up | | IO_SD_CMD | IO_SPI_SCK | | | | | | SD_DAT0/SPI_TXD | J24 | Up | | IO_SD_DAT0 | O_SPI_TXD | | | | | | SD_DAT1/SPI_SSN | J25 | Up | | IO_SD_DAT1 | IO_SPI_SSN | | | | | | SD_DAT2/SPI_RXD | J26 | Up | | IO_SD_DAT2 | I_SPI_RXD | | | | | | SD_DAT3 | J27 | Up | GPIO_7 | IO_SD_DAT3 | | O_WIFI_UART_TXD | O_BT_UART1_RTS | | | | GPIO17
 J29 | Down | GPIO_17 | IO_BT_PCM_CLK | | | | | I_WAKEUP | | GPIO18 | J30 | Down | GPIO_18 | IO_BT_PCM_SYNC | | | | | I_WAKEUP | | GPIO19 | J31 | Down | GPIO_19 | I_BT_PCM_D_IN | | | | | I_WAKEUP | | GPIO20 | J32 | Down | GPIO_20 | O_BT_PCM_D_OUT | | | | | I_WAKEUP | | IRQN | J33 | Up | GPIO_2 | O_IRQN | | I_WIFI_UART_RXD | O_BT_UART1_RTS | | | | GPIO21 | J34 | Up | GPIO_21 | I_RTC_CLK | | I_WIFI_UART_RXD | O_WIFI_UART_TXD | O_BT_UART1_RTS | IO_I2C_MASTER_SCL | | HOST_WAKEUP | J35 | Up | GPIO_0 | I_WAKEUP | | O_WIFI_UART_TXD | | | IO_I2C_MASTER_SDA | ## 10.1 I²C Slave Interface # 10.1.1 Description The I²C Slave interface, used primarily for control by the host processor, is a two-wire serial interface consisting of a serial data line (SDA) on Pin 16 (GPIO14) and a serial clock line (SCL) on Pin 17 (GPIO13). I²C Slave responds to the seven bit address value 0x60. The ATWINC3400-MR210 I²C supports I²C bus Version 2.1 - 2000 and can operate in standard mode (with data rates up to 100Kb/s) and fast mode (with data rates up to 400Kb/s). The I²C Slave is a synchronous serial interface. The SDA line is a bidirectional signal and changes only while the SCL line is low, except for STOP, START, and RESTART conditions. The output drivers are open-drain to perform wire-AND functions on the bus. The maximum number of devices on the bus is limited by only the maximum capacitance specification of 400pF. Data is transmitted in byte packages. For specific information, refer to the Philips Specification entitled "The I²C -Bus Specification, Version 2.1". # 10.1.2 I2C Slave Timing The I²C Slave timing is provided in Figure 10-1 and Table 10-2. Figure 10-1. ATWINC3400-MR210 I²C Slave Timing Diagram Table 10-2. ATWINC3400-MR210 I²C Slave Timing Parameters | Parameter | Symbol | Min. | Max. | Unit | Remarks | |--------------------------------------|--------------------|---------|------|----------|---| | SCL Clock Frequency | f _{SCL} | 0 | 400 | kHz | | | SCL Low Pulse Width | t _{WL} | 1.3 | | μs | | | SCL High Pulse Width | twn | 0.6 | | μs | | | SCL, SDA Fall Time | tHL | | 300 | ns | | | SCL, SDA Rise Time | t _L H | | 300 | ns | This is dictated by external components | | START Setup Time | tsusta | 0.6 | | μs | | | START Hold Time | thdsta | 0.6 | | μs | | | SDA Setup Time | tsudat | 100 | | ns | | | SDA Hold Time | t _{HDDAT} | 0
40 | | ns
µs | Slave and Master Default
Master Programming Option | | STOP Setup Time | tsusto | 0.6 | | μs | | | Bus Free Time Between STOP and START | t _{BUF} | 1.3 | | μs | | | Glitch Pulse Reject | t _{PR} | 0 | 50 | ns | | # 10.2 I²C Master Interface ### 10.2.1 Description ATWINC3400-MR210 provides an I²C bus master, which is intended primarily for accessing an external EEPROM memory through a software-defined protocol. The I²C Master is a two-wire serial interface consisting of a serial data line (SDA) and a serial clock line (SCL). SDA can be configured on pin 42 (HOST_WAKEUP) and SCL can be configured on pin 41 (GPIO21). # 10.2.2 I²C Master Timing The I²C Master interface supports three speeds: - Standard mode (100kb/s) - Fast mode (400kb/s) - High-speed mode (3.4Mb/s) The timing diagram of the I²C Master interface is the same as that of the I²C Slave interface (see Figure 10-1). The timing parameters of I²C Master are shown in Table 10-3. Table 10-3. ATWINC3400-MR210 I²C Master Timing Parameters | Parameter | Symbol | Symbol Standard mode | | Fast mode | | High-speed
mode | | Unit | |--------------------------------------|--------------------|----------------------|------|-----------|------|--------------------|------|------| | | | Min. | Max. | Min. | Max. | Min. | Max. | | | SCL Clock Frequency | fscL | 0 | 100 | 0 | 400 | 0 | 3400 | kHz | | SCL Low Pulse Width | twL | 4.7 | | 1.3 | | 0.16 | | μs | | SCL High Pulse Width | twн | 4 | | 0.6 | | 0.06 | | μs | | SCL Fall Time | tHLSCL | | 300 | | 300 | 10 | 40 | ns | | SDA Fall Time | tHLSDA | | 300 | | 300 | 10 | 80 | ns | | SCL Rise Time | t _{LHSCL} | | 1000 | | 300 | 10 | 40 | ns | | SDA Rise Time | t _{LHSDA} | | 1000 | | 300 | 10 | 80 | ns | | START Setup Time | tsusta | 4.7 | | 0.6 | | 0.16 | | μs | | START Hold Time | t _{HDSTA} | 4 | | 0.6 | | 0.16 | | μs | | SDA Setup Time | tsudat | 250 | | 100 | | 10 | | ns | | SDA Hold Time | t _{HDDAT} | 5 | | 40 | | 0 | 70 | ns | | STOP Setup time | tsusto | 4 | | 0.6 | | 0.16 | | μs | | Bus Free Time Between STOP and START | t _{BUF} | 4.7 | | 1.3 | | | | μs | | Glitch Pulse Reject | t _{PR} | | | 0 | 50 | | | ns | ### 10.3 SPI Slave Interface ### 10.3.1 Description ATWINC3400-MR210 provides a Serial Peripheral Interface (SPI) that operates as a SPI slave. The SPI Slave interface can be used for control and for serial I/O of 802.11 data. The SPI Slave pins are mapped as shown in Table 10-4. The RXD pin is the same as Master Output, Slave Input (MOSI), and the TXD pin is the same as Master Input, Slave Output (MISO). The SPI Slave is a full-duplex slave-synchronous serial interface that is available immediately following reset when Pin 12 (SDIO_SPI_CFG) is tied to VDDIO. Table 10-4. ATWINC3400-MR210 SPI Slave Interface Pin Mapping | Pin # | SPI function | |-------|----------------------------------| | J2 | CFG: Must be tied to VDDIO | | J25 | SSN: Active Low Slave Select | | J23 | SCK: Serial Clock | | J26 | RXD: Serial Data Receive (MOSI) | | J24 | TXD: Serial Data Transmit (MISO) | When the SPI is not selected, i.e., when SSN is high, the SPI interface will not interfere with data transfers between the serial-master and other serial-slave devices. When the serial slave is not selected, its transmitted data output is buffered, resulting in a high impedance drive onto the serial master receive line. The SPI Slave interface responds to a protocol that allows an external host to read or write any register in the chip as well as initiate DMA transfers. For the details of the SPI protocol and more specific instructions, refer to ATWINC3400-MR210 Programming Guide. ### 10.3.2 SPI Slave Modes The SPI Slave interface supports four standard modes as determined by the Clock Polarity (CPOL) and Clock Phase (CPHA) settings. These modes are illustrated in Table 10-5 and Figure 10-2. The red lines in Figure 10-2 correspond to Clock Phase = 0 and the blue lines correspond to Clock Phase = 1. Table 10-5. ATWINC3400-MR210 SPI Slave Modes | Mode | CPOL | СРНА | |------|------|------| | 0 | 0 | 0 | | 1 | 0 | 1 | | 2 | 1 | 0 | | 3 | 1 | 1 | # 10.3.3 SPI Slave Timing The SPI Slave timing is provided in Figure 10-2, Figure 10-3, and Table 10-6. Figure 10-2. ATWINC3400-MR210 SPI Slave Clock Polarity and Clock Phase Timing Figure 10-3. ATWINC3400-MR210 SPI Slave Timing Diagram Table 10-6. ATWINC3400-MR210 SPI Slave Timing Parameters | Parameter | Symbol | Min. | Max. | Unit | |------------------------|-----------------|------|------|------| | Clock Input Frequency | fsck | | 48 | MHz | | Clock Low Pulse Width | twL | 15 | | ns | | Clock High Pulse Width | twн | 15 | | ns | | Clock Rise Time | t _{LH} | | 10 | ns | | Clock Fall Time | t _{HL} | | 10 | ns | | Input Setup Time | tisu | 5 | | ns | | Parameter | Symbol | Min. | Max. | Unit | |-------------------------|--------|------|------|------| | Input Hold Time | tihD | 5 | | ns | | Output Delay | todly | 0 | 20 | ns | | Slave Select Setup Time | tsussn | 5 | | ns | | Slave Select Hold Time | thdssn | 5 | | ns | ## 10.4 SPI Master Interface # 10.4.1 Description ATWINC3400-MR210 provides a SPI Master interface for accessing external flash memory. The SPI Master pins are mapped as shown in Table 10-7. The TXD pin is the same as Master Output, Slave Input (MOSI), and the RXD pin is the same as Master Input, Slave Output (MISO). The SPI Master interface supports all four standard modes of clock polarity and clock phase shown in Table 10-5. External SPI flash memory is accessed by a processor programming commands to the SPI Master interface, which in turn initiates a SPI master access to the flash. For more specific instructions, refer to ATWINC3400-MR210 Programming Guide. Table 10-7. ATWINC3400-MR210 SPI Master Interface Pin Mapping | Pin # | Pin name | SPI function | |-------|----------|---| | J23 | SPI_SCK | Serial Clock Output | | J25 | SPI_SSN | Active Low Slave Select Output | | J26 | SPI_RXD | RXD: Serial Data Transmit Output (MISO) | | J24 | SPI_TXD | TXD: Serial Data Receive Input (MOSI) | ### 10.4.2 SPI Master Timing The SPI Master timing is provided in Figure 10-4 and Table 10-8. Figure 10-4. ATWINC3400-MR210 SPI Master Timing Diagram Table 10-8. ATWINC3400-MR210 SPI Master Timing Parameters | Parameter | Symbol | Min. | Max. | Unit | |------------------------|------------------|------|------|------| | Clock Output Frequency | f _{SCK} | | 48 | MHz | | Clock Low Pulse Width | t _{WL} | 5 | | ns | | Clock High Pulse Width | t _{WH} | 5 | | ns | | Clock Rise Time | t _{LH} | | 5 | ns | | Clock Fall Time | t _{HL} | | 5 | ns | | Input Setup Time | tisu | 5 | | ns | | Input Hold Time | t _{IHD} | 5 | | ns | | Output Delay | todly | 0 | 5 | ns | ## 10.5 SDIO Slave Interface ## 10.5.1 Features - Meets SDIO card specification version 2.0 - Host clock rate variable between 0 and 50MHz - 1 bit/4-bit SD bus modes supported - Allows card to interrupt host - Responds to Direct read/write (IO52) and Extended read/write (IO53) transactions - Supports Suspend/Resume operation ## 10.5.2 Description The ATWINC3400-MR210 SDIO Slave is a full speed interface. The interface supports the 1-bit/4-bit SD transfer mode at the clock range of 0-50MHz. The Host can use this interface to read and write from any register within the chip as well as configure the ATWINC3400-MR210 for data DMA. To use this interface, pin 12 (SDIO_SPI_CFG) must be grounded. The SDIO Slave pins are mapped as shown in Table 10-9. Table 10-9. ATWINC3400-MR210 SDIO Interface Pin Mapping | Pin# | SPI function
 |------|-----------------------------| | J2 | CFG: Must be tied to ground | | J27 | DAT3: Data 3 | | J26 | DAT2: Data 2 | | J25 | DAT1: Data 1 | | J24 | DAT0: Data 0 | | J23 | CMD: Command | | J22 | CLK: Clock | When the SDIO card is inserted into an SDIO aware host, the detection of the card will be via the means described in SDIO specification. During the normal initialization and interrogation of the card by the host, the card will identify itself as an SDIO device. The host software will obtain the card information in a tuple (linked list) format and determine if that card's I/O function(s) are acceptable to activate. If the card is acceptable, it will be allowed to power up fully and start the I/O function(s) built into it. The SD memory card communication is based on an advanced 9-pin interface (Clock, Command, four Data, and three Power lines) designed to operate at maximum operating frequency of 50MHz. ## 10.5.3 SDIO Timing The SDIO Slave interface timing is provided in Figure 10-5 and Table 10-10. Figure 10-5. ATWINC3400-MR210 SDIO Slave Timing Diagram Table 10-10. ATWINC3400-MR210 SDIO Slave Timing Parameters | Parameter | Symbol | Min. | Max. | Unit | |------------------------|------------------|------|------|------| | Clock Input Frequency | fpp | 0 | 50 | MHz | | Clock Low Pulse Width | twL | 10 | | ns | | Clock High Pulse Width | twн | 10 | | ns | | Clock Rise Time | t _{LH} | | 10 | ns | | Clock Fall Time | thL | | 10 | ns | | Input Setup Time | t _{isu} | 5 | | ns | | Input Hold Time | tıн | 5 | | ns | | Output Delay | todly | 0 | 14 | ns | ## 10.6 UART Interface ATWINC3400-MR210 provides Universal Asynchronous Receiver/Transmitter (UART) interfaces for serial communication. The Bluetooth subsystem has two UART interfaces: a 4-pin interface for control, data transfer, and audio (BT UART1), and a 2-pin interface for debugging (BT UART2). The 802.11 subsystem has one 2-pin UART interface (Wi-Fi UART), which can be used for control, data transfer, or debugging. The UART interfaces are compatible with the RS-232 standard, where ATWINC3400-MR210 operates as Data Terminal Equipment (DTE). The 2-pin UART has the receive and transmit pins (RXD and TXD), and the 4-pin UART has two additional pins used for flow control/handshaking; Request To Send (RTS) and Clear To Send (CTS). The pins associated with each UART interfaces can be enabled on several alternative pins by programming their corresponding pin MUX control registers (see Table 10-1 for available options). The UART features programmable baud rate generation with fractional clock division, which allows transmission and reception at a wide variety of standard and non-standard baud rates. The Bluetooth UART input clock is selectable between 104MHz, 52MHz, 26MHz, and 13MHz. The clock divider value is programmable as 13 integer bits and three fractional bits (with 8.0 being the smallest recommended value for normal operation). This results in the maximum supported baud rate of 10MHz/8.0 = 13MBd. The 802.11 UART input clock is selectable between 10MHz, 5MHz, 2.5MHz, and 1.25MHz. The clock divider value is programmable as 13 integer bits and three fractional bits (with 8.0 being the smallest recommended value for normal operation). This results in the maximum supported baud rate of 10MHz/8.0 = 1.25MBd. The UART can be configured for seven or eight bit operation, with or without parity, with four different parity types (odd, even, mark, or space), and with one or two stop bits. It also has RX and TX FIFOs, which ensure reliable high speed reception and low software overhead transmission. FIFO size is 4 x 8 for both RX and TX direction. The UART also has status registers showing the number of received characters available in the FIFO and various error conditions, as well the ability to generate interrupts based on these status bits. An example of UART receiving or transmitting a single packet is shown in Figure 10-6. This example shows 7-bit data (0x45), odd parity, and two stop bits. For more specific instructions, refer to ATWINC3400-MR210 Programming Guide. Figure 10-6. Example of UART RX or TX Packet ## 10.7 PCM Interface ATWINC3400-MR210 provides a PCM/IOM interface for Bluetooth audio. This interface is compatible with industry standard PCM and IOM2 compliant devices, such as audio codecs, line interfaces, TDM switches, and others. The PCM audio interface supports both master and slave modes, full duplex operation, mono, and stereo. The interface operates at 8kHz frame rate and supports bit rates up to 512 bits/frame (4.096Mbps). The PCM interface pins are mapped as shown in Table 10-11. Table 10-11. ATWINC3400-MR210 PSM Interface Pin Mapping | Pin # | PCM function | | |-------|--|--| | J29 | CLK: Bi-directional clock input/output | | | J30 | SYNC: Bi-directional Frame sync (mono) or Left-Right Channel identifier (stereo) | | | J31 | D_IN: Serial data input | | | J32 | D_OUT: Serial data output | | ## 10.8 GPIOs 18 General Purpose Input/Output (GPIO) pins, labeled GPIO 0-8 and 13-21, are available to allow for application specific functions. Each GPIO pin can be programmed as an input (the value of the pin can be read by the host or internal processor) or as an output (the output values can be programmed by the host or internal processor), where the default mode after power-up is input. GPIOs 7 and 8 are available only when the host does not use the SDIO interface, which shares two of its pins with these GPIOs. Therefore, for SDIO-based applications, 16 GPIOs (0-6 and 13-21) are available. ATWINC3400-MR210 provides programmable pull-up resistors on various pins (see Table 4-1). The purpose of these resistors is to keep any unused input pins from floating, which can cause excess current to flow through the input buffer from the VDDIO supply. Any unused pin on the device should leave these pull-up resistors enabled so the pin will not float. The default state at power up is for the pull-up resistor to be enabled. However, any pin which is used should have the pull-up resistor disabled. The reason for this is that if any pins are driven to a low level while the device is in the low power sleep state, current will flow from the VDDIO supply through the pull-up resistors, increasing the current consumption of the module. Since the value of the pull-up resistor is approximately $100k\Omega$, the current through any pull-up resistor that is being driven low will be VDDIO/100K. For VDDIO = 3.3V, the current would be approximately 33μ A. Pins which are used and have had the programmable pull-up resistor disabled should always be actively driven to either a high or low level and not be allowed to float. Refer to ATWINC3400-MR210 Programming Guide for information on enabling/disabling the programmable pull-up resistors. # 11 Reference Design The ATWINC3400-MR210 application schematics are shown in Figure 11-1 and internal module schematic is shown in Figure 11-2. Figure 11-1. ATWINC3400-MR210 Application Schematic for SPI Operation Table 11-1. **SPI Application Bill of Material** | Item | Qty. | Reference | Value | Description | Manufacturer | Part number | Footprint | |------|------|-----------|----------------------|---|--------------|----------------------|---------------------| | 1 | 1 | U1 | ATWINC3400-MR210 | Wi-Fi/BT/BLE combo
module | Atmel | ATWILC3400-MR210CA | Custom | | 2 | 1 | U2 | ASH7KW-32.768kHz-L-T | Oscillator, 32.786kHz,
+0/-175ppm, 1.2V-
5.5V, -40 to +85°C | Abracon | ASH7KW-32.768kHz-L-T | OSCCC320X150X100-4N | | 3 | 1 | R1 | 1M | Resistor, thick film, 1MΩ, 0201 | Panasonic | ERJ-1GEJ105C | RS0201 | | 4 | 13 | R2-R14 | 0 | Resistor, thick film, 0Ω , 0201 | Panasonic | ERJ-1GNOR00C | RS0201 | Figure 11-2. ATWINC3400-MR210 Internal Module Schematic Table 11-2. Module Internal Bill of Material | Item Gty Reference Value Description CAP_CCR_0.001u_F.056_XSR_0.001_10V55_125C C1 | | | | Bill of Material - Chip Antenna Version (CA) | (A) | | |
--|---------|-------------|---------------|---|------------------------|----------------------------------|--------------------------| | 1 C1 0.01uF 6 C2,C4,C5,C6,C8,C9 0.1uF 1 C3 2.2uF 1 C7 1.0uF 1 C7 1.0uF 2 C15,C16 5.6pF 2 C17,C32 1.0pF 3 C18,C23,C24 10pF 1 C19 DNI 2 C3,C33 0.8pF 3 C18,C35 DNI 4 C33 0.5pF 5 C34,C35 DNI 1 C3 C34,C35 1 C3 C34,C35 2 C34,C35 DNI 3 E1,FB2,FB3 BLMO3AG121SN1 4 L1 L1 1 L1 L1 2 C34,C35 DNI 3 R1,R8,R9 0 4 C3,R3 DNI 1 L1 L1 1 U1 V1 2 <td< th=""><th>tem Qty</th><th>Reference</th><th>Value</th><th>Description</th><th>Manufacturer</th><th>Part Number</th><th>Footprint</th></td<> | tem Qty | Reference | Value | Description | Manufacturer | Part Number | Footprint | | 6 C2,C4,C5,C6,C8,C9 0.1uF 1 C3 2.2uF 1 C7 1.0uF 1 C10 1.0uF 2 C15,C16 5.6pF 2 C17,C32 1.0pF 3 C18,C23,C24 10pF 1 C19 DNI 1 C3 0.8pF 2 C34,C35 DNI 3 C18,C23,C24 10pF 4 C3 DNI 1 C39 DNI 2 C34,C35 DNI 3 E1,FB2,FB3 BLM03AG121SN1 4 L1 LuH 1 L1 LuH 2 C34,C35 DNI 3 E1,EB2,FB3 BLM03AG121SN1 4 L1 LuH 1 L1 LuH 2 L8,L9 3.3nH 3 R1,R8,R9 0 4 C1 C1 4 | | C1 | 0.01uF | 11 | Murata | GRM033R61A103KA01D | CS0201 | | 1 C3 2.2uF 1 C7 1.0uF 1 C10 10uF 2 C15,C16 5.6pF 2 C17,C32 1.0pF 3 C18,C23,C24 1.0pF 1 C19 DNI 1 C20 0.8pF 1 C3 0.5pF 2 C34,C35 DNI 3 FB1,FB2,FB3 BLM03AG121SN1 1 L1 1.uH 1 L1 1.uH 2 L8,L9 3.3nH 3 R1,R8,R9 0 1 L1 2.onH 2 R4,R5 DNI 3 R1,R8,R9 0 4 SHIELD 2 1 U1 ATWINC3400 1 V1 ATWINC3400 1 V1 ATWINC3400 1 V3 DNI 1 V4 ATWINC3400 1 < | 9 7 | | | | Murata | GR M033R 60J 104KE19D | CS0201 | | 1 C7 1.0uF 1 C10 10uF 2 C15,C16 5.6pF 2 C17,C32 1.0pF 3 C18,C23,C24 1.0pF 1 C19 DNI 1 C20 0.8pF 1 C20 0.8pF 2 C34,C35 DNI 1 C3 0.5pF 2 C34,C35 DNI 1 L1 1.0H 2 C34,C35 DNI 3 FB1,FB2,FB3 BLM03AG121SNI 4 L1 1.0H 1 L1 1.0H 2 L8,L9 3.3nH 3 R1,R8,R9 0 4 SAH SHIELD 5 R2,R3 DNI 1 U1 V1 1 U1 ATWINC3400 1 V3 DNI 1 V4 DNI 1 V4 | | C3 | 2.2uF | CAP, CER, 2.2u F, 10%, X5R, 0402, 6.3V, -55-85C | TDK | C1005X 5R0J 225K | CS0402 | | 1 C10 10uF 2 C15,C16 5.6pF 2 C17,C32 1.0pF 3 C18,C23,C24 10pF 1 C19 DNI 1 C20 0.8pF 1 C20 0.8pF 2 C34,C35 DNI 3 FB1,FB2,FB3 BLM03AG121SNI 1 L1 1.0H 2 C34,C35 DNI 1 L1 1.0H 2 L8,L9 3.3nH 1 L10 4.3nH 1 L10 4.3nH 2 R2,R3 DNI 3 R1,R8,R9 0 4 SHELD SHIELD 1 V1 ATWINC3400 1 V3 DNI 1 V3 DNI 1 V3 DNI 1 V3 DNI 2 C3,CMH DNI 3 C19,C23,C | | C7 | 1.0uF | CAP, CER, 1.0u F, 10%, X5R, 0402, 6.3V, -55-85C | GRM155R60J105 | GRM155R60J105 GRM155R60J105KE19D | CS0402 | | 2 C15,C16 5.6pF 2 C17,C32 1.0pF 3 C18,C23,C24 10pF 1 C20 0.8pF 1 C20 0.8pF 1 C33 0.5pF 2 C34,C35 DNI 2 C34,C35 DNI 2 C34,C35 DNI 3 FB1,FB2,FB3 BLM03AG121SN1 1 L1 L1 1.0h 1 L10 4.3nH 1 L10 4.3nH 1 L10 2.0nH 1 L11 L1 | | C10 | 10uF | CHIP MONO 0402 10uF 6.3V +-20% X5R | Murata | GR M155R 60J 106NE 44D | CS0402 | | 2 C17,C32 1.0pF 3 C18,C23,C24 10pF 1 C19 DNI 1 C20 0.8pF 1 C33 0.5pF 2 C34,C35 DNI 1 E1 2450AT18A100 1 E1 2450AT18A100 1 L1 1.0H 1 L1 1.0H 2 L8,L9 3.3nH 1 L10 4.3nH 1 L10 4.3nH 2 R2,R3 DNI 3 R1,R8,R9 0 4 SHIELD 9 1 U1 ATWINC3400 1 SH1 SHIELD 1 V1 V1 1 V1 | | C15,C16 | 5.6pF | CHIP MONO 0201 5.6pF 25V +-0.5pF | Murata | GR M0335C1E5R6DA 01D | CS0201 | | 3 C18,C23,C24 10pF 10 10 10 10 10 10 10 1 | 7 2 | C17,C32 | 1.0pF | CAP,CER,1.0pF,0.1pF,NPO,0201,25V,-55-125C | Murata | GR M0335C1E1R0BA01D | CS0201 | | 1 C19 DNI 1 C20 0.8pF 1 C33 0.5pF 2 C34C35 DNI 1 E1 2450AT18A100 3 FB1,FB2,FB3 BLM03AG121SN1 1 L1 1uH 1 L1 1uH 2 L8,L9 3.3nH 1 L10 4.3nH 2 R2,R3 DNI 3 R1,R8,R9 0 4 SHIELD 3 1 U1 ATWINC3400 DNI 1 | | C18,C23,C24 | 10pF | CAP,CER,10pF,0.5pF,NPO,0201,25V,-55-125C | TDK | C0603C0G1E100D030BA | CS0201 | | 1 C20 0.8pF 1 C33 0.5pF 2 C34,C35 DNI 1 E1 2450A118A100 3 FB1,FB2,FB3 BLM03AG121SN1 1 L1 1uH 1 L1 1uH 2 L8,L9 3.3nH 1 L10 4.3nH 1 L10 4.3nH 2 R2,R3 DNI 2 R4,R5 DNI 1 U1 ATWINC3400 1 V1 SHIELD 1 V1 ATWINC3400 1 V1 ATWINC3400 1 V1 DNI 1 V1 ATWINC3400 1 V1 DNI 1 V1 ASMI+Z 1 U1 DNI 1 U1 DNI 2 C4,C23,C24 DNI 3 C10,C23,C24 DNI 4 C | | C19 | DNI | CAP, CER, 10pF, 0.5p F, NPO, 0201, 25V, -55-125C | TDK | C0603C0G1E100D030BA | CS0201 | | 1 C33 0.5pF 2 C34,C35 DNI 1 E1 2450A118A100 3 FB1,FB2,FB3 BLM03AG121SN1 1 L1 1uH 1 L5 15nH 2 L8,L9 3.3nH 1 L10 4.3nH 1 L10 4.3nH 2 R4,R5 DNI 2 R4,R5 DNI 1 U1 ATWINC3400 1 U1 DNI 1 U1 DNI 2 C6MHz DNI 3 C19,C23,C24 DNI 4 C10 DNI 1 C10 DNI 1 C10 DNI 1 < | | C20 | 0.8pF | CAP,CER,0.8pF,0.1pF,NPO,0201,25V,-55-125C | TDK | C0603C0G1E0R8B030BF | CS0201 | | 2 C34,C35 DNI 1 E1 2450AT18A100 3 FB1,FB2,FB3 BLM03AG121SN1 1 L1 LuH 1 L5 15nH 2 L8,L9 3.3nH 1 L10 4.3nH 1 L10 4.3nH 2 R2,R3 DNI 3 R1,R8,R9 0 4 SHIELD SHIELD 5 R4,R5 DNI 1 U1 ATWINC3400 1 U1 ATWINC3400 1 U1 ATWINC3400 1 U1 DNI 1 U1 DNI 1 U1 DNI 1 U1 DNI 2 C3CA24 DNI 3 C10,C23,C24 DNI 4 C10 DNI 1 L10 DNI 1 U1 DNI 1 U1 | | C33 | 0.5pF | CAP,CER,0.5pF,0.1pF,NPO,0201,25V,-55-125C | Murata | GR M0335C1ER50BA01D | CS0201 | | E1 | | C34,C35 | DNI | CAP,CER,0.5pF,0.1pF,NPO,0201,25V,-55-125C | Murata | GR M0335C1ER50BA 01D | CS0201 | | 3 FBJ,FB2,FB3 BLM03AG121SNI 1 L1 1 L5 1 L5 1 L9 1 L10 1 L10 1 L10 1 L10 2 R3,RH 3 R1,R8,R9 0 DNI 1 SH1 SH1 SHIELD 1 SH1 ATWINC3400 1 U2 DNI 1 V1 26MHz 1 V1 26MHz 1 U8 DNI 1 U8 DNI 1 C20 DNI 1 C20 DNI 1 C20 DNI 1 L10 L11 1 L10 1 L11 1 L10 1 L11 | | E1 | 2450AT18A100 | Antenna, ceramic, 2.4-2.5GHz, 50ohm | Johanson | 2450AT18A100 | ANT_2450AT18A100 | | 1 L1 10H 1 L5 L5H 2 L8,L9 3.3nH 1 L10 4.3nH 1 L10 4.3nH 1 L11 2.0nH 2 R2,R3 DNI 2 R4,R5 DNI 1 U1 ATWINC3400 1 U2 DNI 1 U2 DNI 1 U2 DNI 1 U8 DNI 1 U8 DNI 2 C19,C23,C24 10pF 1 C20 DNI 1 C20 DNI 1 L10 DNI 1 L10 DNI 1 U1 DHI 1 UR U.FL-R-SMT-1 | | FB1,FB2,FB3 | BLM03AG121SN1 | . FERRITE, 120 OHM @100MHz, 200mA, 0201,-55-125C | Murata | BLM03AG121SN1 | FBS0201 | | 1 15 15 15nH | | L1 | 1uH | 1u H, 20%, 940m A, 0.125 ohms, 0603, shielded, -40-85 c | Murata | LQM18PN1R0MFRL | E090ST | | 2 L8,L9 3.3nH 1 L10 4.3nH 1 L11 2.0nH 3 R1,R8,R9 0 2 R2,R3 DNI 1 SH1ELD SHIELD 1 SH1 SHIELD 1 U1 ATWINC3400 1 U1 ATWINC3400 1 U1 ATWINC3400 1 U1 ATWINC3400 1 U8 DNI 2 CAMH2 ONI 3 C19,C23,C24 JOPF 4 C20 DNI 1 C20 DNI 1 L10 DNI 1 L10 DNI 1 L11 DHI 1 UK-R-SMI-1 | | L5 | 15nH | INDUCTOR, Multilaye r, 15nH, 5%, 350mA, Q=8@100MHz, 0402 | Murata | LQG15HS15NJ02D | LS0402 | | 1 110 4.3nH 1 111 2.0nH 1 111 2.0nH 1 2 R2,R3 DNI 1 SH1 SH1 SHIELD 1 SH1 SHIELD 1 U1 ATWINC3400 1 U2 DNI 1 U2 DNI 1 1 V1 26MHz 1 Y1 26MHz 2 SMHz SM | 17 2 | 67'81 | 3.3nH | Inductor, 3.3n H, 0.2n H, Q=13@500MHz, SRF=8.1GHz, 0201, -55-125C | Taiyo Yuden | HKQ0603S3N3C-T | LS0201 | | 1 111 2.0nH 3 R1,R8,R9 0 1 2 R2,R3 DNI 1 SH1 SH1 SHIELD 1 U1 ATWINC3400 1 U2 DNI 1 U2 DNI 1 U2 DNI 1 1 U8 DNI 1 1 U8 DNI 26MHz 26MHz 27 C19,C23,C24 10pF 28 C19,C23,C24 DNI 29 DNI 20 DNI 21 C20 DNI 21 L10 DHI 21 U8 DNI 21 U10 | | L10 | 4.3nH | Inductor, 4.3n H, 0.2n H, Q=13@500MHz, SRF=6.5GHz, 0201, -55-125C | Taiyo Yuden | HKQ0603S4N3C-T | LS0201 | | 3 R1,R8,R9 0 2 R2,R3 DNI 2 R4,R5 DNI 1 SH1 SH1 SHIELD 1 U2 DNI 1 U2 DNI 1 1 V1 Z6MHz 1 V1 Z6MHz 1 U8 DNI 1 C18 DNI 1 C20 DNI 1 C20 DNI 1 L10 DHI 1 L10 DHI 1 L11 DH | | L11 | 2.0nH | Inductor, 2.0n H, 0.2n H, Q=13@500MHz, SRF=10GHz, 0201,-55-125C | Taiyo Yuden | HKQ0603S2N0C-T | LS0201 | | 2 R2,R3 DNI 2 R4,R5 DNI 1 SH1 SH1ELD 3 L1 U2 DNI 1 U2 DNI 1 V1 Z6MHz 1 V3 Z6MHz 1 U8 DNI 2 C19,C23,C24 10pF 1 C20 DNI 1 L10 DNI 1 L10 DNI 1 L10 DNI 1 L11 DH | | R1, R8, R9 | 0 | RESISTOR, Thick Film, 0 ohm, 0201 | Panasonic | ERJ-1GN OR OOC | RS0201 | | 2 R4.R5 DNI 1 SH1 SHIELD 1 U1 ATWINC3400 1 U2 DNI 1 Y1 26MHz 1 U8 DNI 1 U8 DNI 2 C19,C23,C24 10pF 1 C20 DNI 1 L10 DNI 1 L10 DNI 1 L10 DNI 1 U8 U.FL-R-SMT-1 | | R2,R3 | DNI | RESISTOR, Thick Film, 0 ohm, 0201 | Panasonic | ERJ-1GN OR OOC | RS0201 | | 1 SH1 SHELD 1 U1 ATWINC3400 1 U2 DNI 1 Y1 Z6MHz 1 W8 DNI 2 C19,C23,C24 IOpF 1 C20 DNI 1 L10 DNI 1 L10 DNI 1 L11 DHI 1 U8 U.FL-R-SMI-1 | | R4,R5 | DNI | RESISTOR, Thick Film, 4.7K, 5%, 0201 | Vishay | CRCW0201-472J | RS0201 | | 1 U1 ATVINC3400 1 U2 DNI 1 Y1 26MHz 1 U8 DNI 2 C19,C23,C24 10pF 1 C18 DNI 1 C20 DNI 1 L10 DHI 1 L11 DH | | SH1 | SHIELD | Shield | Laird | BMI-S-101 | LAIRD_BMI-S-101 | | 1 U2 DNI 1 Y1 26MHz 1 U8 DNI 1 U8 DNI 2
C19,C23,C24 10pF 1 C20 DNI 1 L10 DNI 1 L11 DHI 1 U8 U.FL-R-SMT-1 | | U1 | ATWINC3400 | IC, SOC, WiFi Bluetooth & FM Combo, 48QFN | Newport Media, NMC3400 | | QFN-48-6X6-P4-HP100-THRM | | 1 Y1 26MHz 1 U8 DNI 3 C19,C23,C24 10pF 1 C20 DNI 1 L10 DNI 1 L11 DHI 1 U8 U.FL-R-SMT-1 | | U2 | DNI | IC, Memory, Crypto Authentication, 1 Wire, SOT23-3 | Atmel | ATSHA204A-MAHDA | SON50P300X200X60-9N | | 1 U8 DNI 3 C19,C23,C24 10pF 1 C18 DNI 1 C20 DNI 1 L10 DNI 1 L11 DHI 1 U8 U.FL-R-SMT-1 | | | 26MHz | CRYSTAL, 26MHz, CL=8pF, 15ppm, -40-85C, ESR=60, 2.5x2mm | Taitien | A0183-X-001-3 | 2.5x2.0 | | 3 C19,C23,C24 10pF
1 C18 DNI
1 C20 DNI
1 L10 DNI
1 L11 DHI
1 U8 U.FL-R-SMT-1 | | U8 | DNI | Connector, RF, Recptacle, 6GHz, 50 ohm, SM, -40-90C | Hirose | U.FL-R-SMT-1 | RECT_U_FL-R-SMT | | 3 C19,C23,C24 10pF 1 C18 DNI C20 DNI DNI C20 D | | | | | | | | | 3 C19,C23,C24 10pF
1 C18 DNI
1 C20 DNI
1 L10 DNI
1 L11 DHI
1 U8 U.FL-R-SMT-1 | | | | Changes to uFL Version (uFL) | | | | | 1 C18 DNI 1 C20 DNI 1 L10 DNI 1 L11 DHI 1 UB U.FL-R-SMT-1 | | C19,C23,C24 | 10pF | CAP, CER, 10pF, 0.5p F, NPO, 0201, 25V, -55-125C | TDK | C0603C0G1E100D030BA | CS0201 | | 1 C20 DNI 1 L10 DNI 1 L11 DHI 1 UW U.FL-R-SMT-1 | | C18 | DNI | CAP, CER, 10pF, 0.5pF, NPO, 0201, 25V, -55-125C | TDK | C0603C0G1E100D030BA | CS0201 | | 1 L10 DNI
1 L11 DHI
1 U8 U.FL-R-SMT-1 | | C20 | DNI | CAP, CER, 0.8p F, 0.1pF, NPO, 0201, 25V, -55-125C | TDK | C0603C0G1E0R8B030BF | CS0201 | | 1 L11 DHI 1 U.FL-R-SMT-1 | | L10 | DNI | Inductor, 4.3n H, 0.2n H, Q=13@500MHz, SRF=6.5GHz, 0201, -55-125C | Taiyo Yuden | | LS0201 | | 1 U8 U.FL-R-SMT-1 | | L11 | DHI | Inductor, 2.0n H, 0.2n H, Q=13@500MHz, SRF=10GHz, 0201,-55-125C | Taiyo Yuden | C-T | LS0201 | | | | N8 | U.FL-R-SMT-1 | Connector, RF, Recptacle, 6GHz, 50 ohm, SM,-40-90C | Hirose | U.FL-R-SMT-1 | RECT_U_FL-R-SMT | ATWINC3400-MR210 IEEE 802.11 b/g/n Link Controller with Integrated Low Energy Bluetooth 4.0 PRELIMINARY DATASHEET] # 12 Package Drawing The ATWINC3400-MR210 module with uFL connector package details are shown in Figure 12-1. The ATWINC3400-MR210 module with Chip Antenna package details are shown in Figure 12-2. Figure 12-1. ATWINC3400-MR210 Module with uFL Connector Package Dimensions ij ATMEL LAKE FOREST ATMING3400 MODULE WITH CHIP ANTENNA ر الح ENG ٧AL 21/11/90 51/91/90 DATE CND PAD ENGNEDE: V. PLANDA CHECKED: V. IRLANDA DRAWN V. PLANDA BOTTOM CORRECTED PAD TO POB EDGE DIM. ADD NEW DRAWING GENERATION ADD CHP ANTDRIA OUTLINE L2040P1 07/29/15 uuuuuuuuuu DATE: dagaadaaaaa ATWINC3400-MR210CA 1:1 OR AS NOTED VIEWÆ. FCC ID: AAAAAAAAAAAA MAC ID: XXXXXXXXXXXX _ _ D/C: S YYWW annanananan 99999999999 J24 🕥 125 126 127 128 130 131 132 133 134 135 J23 D BOTTOM VIEW JSS D J21 JS0 J19 J18 D J17 J16 J15 J14 D TAAAAAAAAAAAAA Figure 12-2. ATWINC3400-MR210 Module with uFL Connector Package Dimensions Recommended Reflow Profile Referred to IPC/JEDEC standard. Peak Temperature: <250°C Number of Times: two times maximum. Figure 12-3. Typical Reflow Profile ### 13 **Revision History** | Doc Rev. | Date | Comments | |----------|---------|---------------------------| | 42535A | 10/2015 | Initial document release. | **Atmel Corporation** 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 www.atmel.com © 2015 Atmel Corporation. / Rev.: Atmel-42535A-ATWINC3400-MR210-IEEE802.11bgn-Link-Ctlr-with-Integrated-Low-Energy-Bluetooth4.0_Datasheet_102015. Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. ARM®, ARM Connected® logo, and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be trademarks of others. DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES) FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.