- · Green SSOP28 package.
- Operating temperature: -40 $^{\circ}$ C ~ +85 $^{\circ}$ C .

APPLICATION

The M90E26 is used for active and reactive energy metering for single-phase two-wire (1P2W), single-phase three-wire (1P3W) or anti-tampering energy meters. With the measurement function, the M90E26 can also be used in power instruments which need to measure voltage, current, etc.

DESCRIPTION

The M90E26 is a high-performance wide-span energy metering chip. The ADC and DSP technology ensure the chip's long-term stability over variations in grid and ambient environmental conditions.

BLOCK DIAGRAM

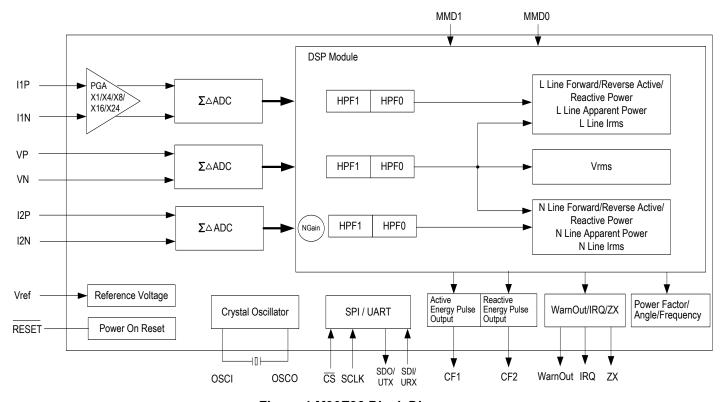


Figure-1 M90E26 Block Diagram

Table of Contents

Fe	eatures	1
Αį	pplication	2
D	escription	2
ВІ	lock Diagram	2
1	Pin Assignment	7
	Pin Description	
3	Functional Description	10
	3.1 Dynamic Metering Range	
	3.2 Startup and No-Load Power	
	3.3 Energy Registers	11
	3.4 N Line Metering and Anti-Tampering	12
	3.4.1 Metering Mode and L/N Line Current Sampling Gain Configuration	12
	3.4.2 Anti-Tampering Mode	
	3.5 Measurement and Zero-Crossing	
	3.5.1 Measurement	_
	3.5.2 Zero-Crossing	
	3.6 Calibration	
	3.7 Reset	
4	Interface	
	4.1 SPI Interface	
	4.1.1 Four-Wire Mode	
	4.1.2 Three-Wire Mode	
	4.1.3 Timeout and Protection	
	4.2 UART Interface	
	4.2.2 Write Transaction	
	4.2.3 Read transaction	
	4.2.4 Checksum	19
	4.3 WarnOut Pin for Fatal Error Warning	20
	4.4 Low Cost Implementation in Isolation with MCU	20
5	Register	21
	5.1 Register List	
	5.2 Status and Special Register	
	5.3 Metering/ Measurement Calibration and Configuration	
	5.3.1 Metering Calibration and Configuration Register	
	5.3.2 Measurement Calibration Register	
	5.4 Energy Register	39
	5.5 Measurement Register	44

Electrical Specification	51
6.7 Absolute Maximum Rating	56
dering Information	57
<u> </u>	
	Electrical Specification 6.1 Electrical Specification 6.2 SPI Interface Timing 6.3 Power On Reset Timing 6.4 Zero-Crossing Timing 6.5 Voltage Sag Timing 6.6 Pulse Output 6.7 Absolute Maximum Rating clering Information ackaging Drawings.

List of Tables

Table-1	Pin Description	8
Table-2	Active Energy Metering Error	10
Table-3	Reactive Energy Metering Error	10
Table-4	Threshold Configuration for Startup and No-Load Power	10
Table-5	Energy Registers	11
	Metering Mode	
	The Measurement Format	
	Read / Write Result in Four-Wire Mode	
Table-9	Read / Write Result in Three-Wire Mode	17
	Register List	
Table-11	SPI Timing Specification	53
	Power On Reset Specification	
Table-13	Zero-Crossing Specification	55
Table-14	Voltage Sag Specification	56

List of Figures

Figure-1	M90E26 Block Diagram	. 2
Figure-2	Pin Assignment (Top View)	. 7
Figure-3	Read Sequence in Four-Wire Mode	15
Figure-4	Write Sequence in Four-Wire Mode	15
Figure-5	Read Sequence in Three-Wire Mode	16
Figure-6	Write Sequence in Three-Wire Mode	16
Figure-7	UART Byte Level Timing	18
Figure-8	Write Transaction	18
Figure-9	Read Transaction	19
Figure-10	4-Wire SPI Timing Diagram	53
	3-Wire SPI Timing Diagram	
Figure-12	Power On Reset Timing Diagram	54
	Zero-Crossing Timing Diagram	
-	Voltage Sag Timing Diagram	
	Output Pulse Width	

1 PIN ASSIGNMENT

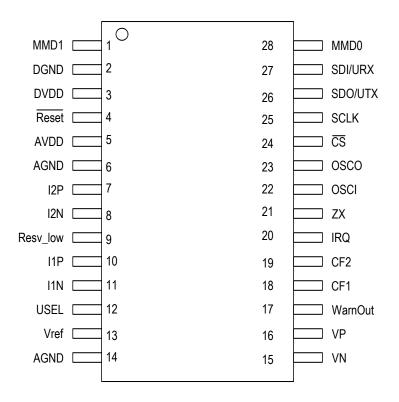


Figure-2 Pin Assignment (Top View)

2 PIN DESCRIPTION

Table-1 Pin Description

Name	Pin No.	I/O note 1	Туре	Description	
Reset	4	I	LVTTL	Reset: Reset Pin (active low) This pin should connect to ground through a 0.1μF filter capacitor. In application it can also directly connect to one output pin from microcontroller (MCU).	
DVDD	3	I	Power	DVDD: Digital Power Supply This pin provides power supply to the digital part. It should be decoupled with a 10μ F electrolytic capacitor and a 0.1μ F capacitor.	
DGND	2	I	Power	DGND: Digital Ground	
AVDD	5	I	Power	AVDD: Analog Power Supply This pin provides power supply to the analog part. It should be decoupled with a 0.1μF capacitor.	
Vref	13	0	Analog	Vref: Output Pin for Reference Voltage This pin should be decoupled with a 1μF capacitor and a 1nF capacitor.	
AGND	6, 14	I	Power	AGND: Analog Ground	
I1P I1N	10 11	I	Analog	I1P: Positive Input for L Line Current I1N: Negative Input for L Line Current These pins are differential inputs for L line current. Input range is 5μVrms~25mVrms when gain is '24'.	
12P 12N	7 8	I	Analog	I2P: Positive Input for N Line Current I2N: Negative Input for N Line Current These pins are differential inputs for N line current. Input range is 120μVrms~600mVrms when gain is '1'.	
VP VN	16 15	ı	Analog	VP: Positive Input for Voltage VN: Negative Input for Voltage These pins are differential inputs for voltage. Input range is 120μVrms~600mVrms.	
USEL	12	ı	LVTTL	USEL: UART/SPI Interface Selection High: UART interface Low: SPI interface Note: This pin should not change after reset.	
<u>CS</u>	24	I	LVTTL	CS: Chip Select (Active Low) of SPI In 4-wire SPI mode, this pin must be driven from high to low for each rea write operation, and maintain low for the entire operation. In 3-wire S mode, this pin must be low all the time. Refer to section 4.1. In UART interface, this pin should be connected to VDD. SCLK: Serial Clock of SPI This pin is used as the clock for the SPI interface. Data on SDI is shifted in the chip on the riging edge of SCLK while data on SDO is shifted out of the	
SCLK	25	I	LVTTL		

Table-1 Pin Description (Continued)

Name	Pin No.	I/O note 1	Туре	Description
				SDO: Serial Data Output of SPI This pin is used as the data output for the SPI interface. Data on this pin is shifted out of the chip on the falling edge of SCLK.
SDO/UTX	26	OZ	LVTTL	UTX: UART Data Transmit This pin is used to transmit data for the UART interface. This pin needs to be pulled up to VDD by a $10k\Omega$ resistor."
				Note: UART and SPI interface is selected by the USEL pin.
				SDI: Serial Data Input of SPI This pin is used as the data input for the SPI interface. Address and data on this pin is shifted into the chip on the rising edge of SCLK.
SDI/URX	27		LVTTL	URX: UART Data Receive This pin is used to receive data for the UART interface.
				Note: UART and SPI interface is selected by the USEL pin.
MMD1 MMD0	1 28	I	LVTTL	MMD1/0: Metering Mode Configuration 00: anti-tampering mode (larger power); 01: L line mode (fixed L line); 10: L+N mode (applicable for single-phase three-wire system); 11: flexible mode (line specified by the LNSel bit (MMode, 2BH))
OSCI	22	I	LVTTL	OSCI: External Crystal Input An 8.192 MHz crystal is connected between OSCI and OSCO. In application, this pin should be connected to ground through a 12pF capacitor.
osco	23	0	LVTTL	OSCO: External Crystal Output An 8.192 MHz crystal is connected between OSCI and OSCO. In application, this pin should be connected to ground through a 12pF capacitor.
CF1 CF2	18 19	0	LVTTL	CF1: Active Energy Pulse Output CF2: Reactive Energy Pulse Output These pins output active/reactive energy pulses.
ZX	21	0	LVTTL	ZX: Voltage Zero-Crossing Output This pin is asserted when voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing or all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH).
IRQ	20	0	LVTTL	IRQ: Interrupt Output This pin is asserted when one or more events in the SysStatus register (01H) occur. It is deasserted when there is no bit set in the SysStatus register (01H).
WarnOut	17	0	LVTTL	WarnOut: Fatal Error Warning This pin is asserted when there is metering parameter calibration error or voltage sag. Refer to section 4.3.
Resv_Low	9	I	LVTTL	Reserved For normal operation, these pins should be connected to ground.

3 FUNCTIONAL DESCRIPTION

3.1 DYNAMIC METERING RANGE

Accuracy is 0.1% for active energy metering and 0.2% for reactive energy metering over a dynamic range of 5000:1 (typical). Refer to Table-2 and Table-3.

Table-2 Active Energy Metering Error

Current	Power Factor	Error(%)		
20mA ≤ I < 50mA	1.0	±0.2		
50mA ≤ I ≤ 100A	1.0	±0.1		
50mA ≤ I < 100mA	0.5 (Inductive)	±0.2		
100mA ≤ I ≤ 100A	0.8 (Capacitive)	±0.1		
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6Ω .				

Table-3 Reactive Energy Metering Error

Current	sinφ (Inductive or Capacitive)	Error(%)		
20mA ≤ I < 50mA	1.0	\pm 0.4		
50mA ≤ I ≤ 100A	1.0	±0.2		
50mA ≤ I < 100mA	0.5	±0.4		
100mA ≤ I ≤ 100A	0.5	±0.2		
Note: Shunt resistor is 250 $\mu\Omega$ or CT ratio is 1000:1 and load resistor is 6Ω .				

3.2 STARTUP AND NO-LOAD POWER

Startup and no-load power thresholds are programmable, both for active and reactive power. The related registers are listed in Table-4.

Table-4 Threshold Configuration for Startup and No-Load Power

Threshold	Register
Threshold for Active Startup Power	PStartTh, 27H
Threshold for Active No-load Power	PNoITh, 28H
Threshold for Reactive Startup Power	QStartTh, 29H
Threshold for Reactive No-load Power	QNolTh, 2AH

The M90E26 will start within 1.2 times of the theoretical startup time of the configured startup power, if startup power is less than the corresponding power of 20mA when power factor or $\sin\phi$ is 1.0.

The M90E26 has no-load status bits, the Pnoload/Qnoload bit (EnStatus, 46H). The M90E26 will not output any active pulse (CF1) in active no-load state. The M90E26 will not output any reactive pulse (CF2) in reactive no-load state.

3.3 ENERGY REGISTERS

The M90E26 provides energy pulse output CFx (CF1/CF2) which is proportionate to active/reactive energy. Energy is usually accumulated by adding the CFx pulses in system applications. Alternatively, the M90E26 provides energy registers. There are forward (inductive), reverse (capacitive) and absolute energy registers for both active and reactive energy. Refer to Table-5.

Table-5 Energy Registers

Energy	Register
Forward Active Energy	APenergy, 40H
Reverse Active Energy	ANenergy, 41H
Absolute Active Energy	ATenergy, 42H
Forward (Inductive) Reactive Energy	RPenergy, 43H
Reverse (Capacitive) Reactive Energy	RNenergy, 44H
Absolute Reactive Energy	RTenergy, 45H

Each energy register is cleared after read. The resolution of energy registers is 0.1CF, i.e. one LSB represents 0.1 energy pulse.

3.4 N LINE METERING AND ANTI-TAMPERING

3.4.1 METERING MODE AND L/N LINE CURRENT SAMPLING GAIN CONFIGURATION

The M90E26 has two current sampling circuits with N line metering and anti-tampering functions. The MMD1 and MMD0 pins are used to configure the metering mode. Refer to Table-6.

Table-6 Metering Mode

MMD1	MMD0	Metering Mode	CFx (CF1 or CF2) Output		
0	0	LANTI-TAMPETING MODE (Jarger Dower)	CFx represents the larger energy line. Refer to section 3.4.2.		
0	1	L Line Mode (fixed L line)	CFx represents L line energy all the time.		
1	0	L+N Mode (applicable for single-phase three-wire system)	energy		
1	1	Flexible Mode (line specified by the LNSel bit (MMode, 2BH))	CFx represents energy of the specified line.		

The M90E26 has two current sampling circuits with different gain configurations. L line gain can be 1, 4, 8, 16 and 24, and N line gain can be 1, 2 and 4. The configuration is made by the MMode register (2BH). Generally L line can be sampled over shunt resistor or CT. N line can be sampled over CT for isolation consideration. Note that Rogowski coil is not supported.

3.4.2 ANTI-TAMPERING MODE

Threshold

In anti-tampering mode, the power difference threshold between L line and N line can be: 1%, 2%,... 12%, 12.5%, 6.25%, 3.125% and 1.5625%, altogether 16 choices. The configuration is made by the Pthresh[3:0] bits (MMode, 2BH) and the default value is 3.125%. The threshold is applicable for active energy. The metering line of the reactive energy follows that of the active energy.

Compare Method

In anti-tampering mode, the compare method is as follows:

If current metering line is L line and

N line is switched as the metering line, otherwise L line keeps as the metering line.

If current metering line is N line and

L line is switched as the metering line, otherwise N line keeps as the metering line.

This method can achieve hysteresis around the threshold automatically. L line is employed after reset by default.

Special Treatment at Low Power

When power is low, general factors such as the quantization error or calibration difference between L line and N line might cause the power difference to be exceeded. To ensure L line and N line to start up normally, special treatment as follows is adopted:

The line with higher power is selected as the metering line when both L line and N line power are lower than 8 times of the startup power but higher than the startup power.

3.5 MEASUREMENT AND ZERO-CROSSING

3.5.1 MEASUREMENT

The M90E26 has the following measurements:

- · voltage rms
- · current rms (L line/N line)
- mean active power (L line/N line)
- mean reactive power (L line/N line)
- voltage frequency
- power factor (L line/N line)
- phase angle between voltage and current (L line/N line)
- mean apparent power (L line/N line)

The above measurements are all calculated with fiducial error except for frequency. The frequency accuracy is 0.01Hz, and the other measurement accuracy is 0.5%. Fiducial error is calculated as follow:

$$Fiducial_E \, rror = \frac{U_{mea} - U_{real}}{U_{rv}} * 100\%$$

Where U_{mea} is the measured voltage, U_{real} is the actual voltage and U_{FV} is the fiducial value.

Table-7 The Measurement Format

Measurement	Fiducial Value (FV)	M90E26 Defined Format	Range	Comment
Voltage rms	Un	XXX.XX	0~655.35V	
Current rms ^{note 1, note 2}	lmax as 4lb	XX.XXX	0~65.535A	
Active/ Reactive Power ^{note 1}	maximum power as Un*4lb	XX.XXX	-32.768~+32.767 kW/kvar	Complement, MSB as the sign bit
Apparent Power ^{note 1}	Un*4lb	XX.XXX	0~+32.767 kVA	Complement, MSB always '0'
Frequency	fn	XX.XX	45.00~65.00 Hz	
Power Factor ^{note 3}	1.000	X.XXX	-1.000~+1.000	Signed, MSB as the sign bit
Phase Angle ^{note 4}	180°	XXX.X	-180°~+180°	Signed, MSB as the sign bit

Note 1: All registers are of 16 bits. For cases when the current and active/reactive/apparent power goes beyond the above range, it is suggested to be handled by microcontroller (MCU) in application. For example, register value can be calibrated to 1/2 of the actual value during calibration, then multiply 2 in application. Note that if the actual current is twice of that of the M90E26, the actual active/reactive/apparent power is also twice of that of the M90E26.

Note 2: The accuracy is not guaranteed when the current is lower than 15mA. Note that the tolerance is 25 mA at I_{FV} of 5A and fiducial accuracy of 0.5%.

Note 3: Power factor is obtained by active power dividing apparent power

Note 4: Phase angle is obtained when voltage/current crosses zero at the frequency of 256kHz. Precision is not guaranteed at small current.

3.5.2 ZERO-CROSSING

The ZX pin is asserted when the sampling voltage crosses zero. Zero-crossing mode can be configured to positive zero-crossing, negative zero-crossing and all zero-crossing by the Zxcon[1:0] bits (MMode, 2BH). Refer to section 6.4.

The zero-crossing signal can facilitate operations such as relay operation and power line carrier transmission in typical smart meter applications.

3.6 CALIBRATION

Calibration includes metering and measurement calibration.

Metering Calibration

The M90E26 design methodology guarantees the accuracy over the entire dynamic range, after metering calibration at one specific current, i.e. the basic current of I_b.

The calibration procedure includes the following steps:

- 1. Calibrate gain at unity power factor;
- 2. Calibrate phase angle compensation at 0.5 inductive power factor.

Generally, line current sampling is susceptible to the circuits around the sensor when shunt resistor is employed as the current sensor in L line. For example, the transformer in the energy meter's power supply may conduct interference to the shunt resistor. Such interference will cause perceptible metering error, especially at low current conditions. The total interfere is at a statistically constant level. In this case, the M90E26 provides the power offset compensation feature to improve metering performance.

L line and N line need to be calibrated sequentially. Reactive energy does not need to be calibrated after active energy calibration completed.

Measurement Calibration

Measurement calibration includes gain calibration for voltage rms and current rms.

Considering the possible nonlinearity around zero caused by external components, the M90E26 also provides offset compensation for voltage rms, current rms, mean active power and mean reactive power.

The M90E26 design methodology guarantees automatic calibration for frequency, phase angle and power factor measurement.

3.7 RESET

The M90E26 has an on-chip power supply monitor circuit with built-in hysteresis. The M90E26 only works within the voltage range.

The M90E26 has three means of reset: power-on reset, hardware reset and software reset. All registers resume to their default value after reset.

Power-on Reset: Power-on reset is initiated during power-up. Refer to section 6.3.

Hardware Reset: Hardware Reset is initiated when the reset pin is pulled low. The width of the reset signal should be over 200μs.

Software Reset: Software Reset is initiated when '789AH' is written to the software reset register (SoftReset, 00H).

4 INTERFACE

The M90E26 supports both Serial Peripheral Interface (SPI) and UART interface. The selection is made by the USEL pin. When the USEL pin is low, SPI interface is selected. When the USEL pin is high, UART interface is selected. Note that the USEL pin should not change after reset.

4.1 SPI INTERFACE

SPI is a full-duplex, synchronous channel. There are two SPI modes: four-wire mode and three-wire mode. In four-wire mode, four pins are used: \overline{CS} , SCLK, SDI and SDO. In three-wire mode, three pins are used: SCLK, SDI and SDO. Data on SDI is shifted into the chip on the rising edge of SCLK while data on SDO is shifted out of the chip on the falling edge of SCLK. The LastData register (06H) stores the 16-bit data that is just read or written.

4.1.1 FOUR-WIRE MODE

In four-wire mode, the \overline{CS} pin must be driven low for the entire read or write operation. The first bit on SDI defines the access type and the lower 7-bit is decoded as address.

Read Sequence

As shown in Figure-3, a read operation is initiated by a high on SDI followed by a 7-bit register address. A 16-bit data in this register is then shifted out of the chip on SDO. A complete read operation contains 24 cycles.

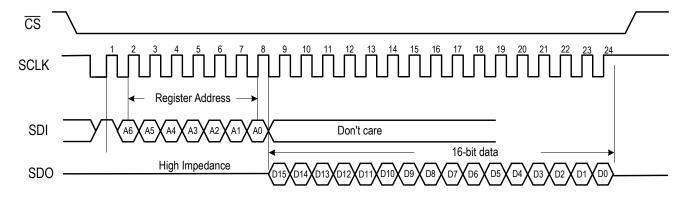


Figure-3 Read Sequence in Four-Wire Mode

Write Sequence

As shown in Figure-4, a write operation is initiated by a low on SDI followed by a 7-bit register address. A 16-bit data is then shifted into the chip on SDI. A complete write operation contains 24 cycles.

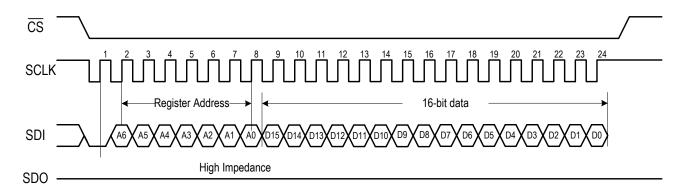


Figure-4 Write Sequence in Four-Wire Mode

4.1.2 THREE-WIRE MODE

In three-wire mode, $\overline{\text{CS}}$ is always at low level. When there is no operation, SCLK keeps at high level. The start of a read or write operation is triggered if SCLK is consistently low for at least 400 μ s. The subsequent read or write operation is similar to that in four-wire mode. Refer to Figure-5 and Figure-6.

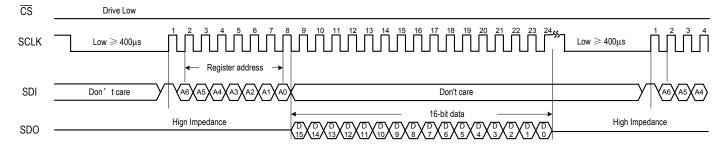


Figure-5 Read Sequence in Three-Wire Mode

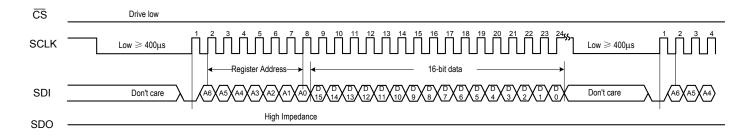


Figure-6 Write Sequence in Three-Wire Mode

4.1.3 TIMEOUT AND PROTECTION

Timeout occurs if SCLK does not toggle for 6ms in both four-wire and three-wire modes. When timeout, the read or write operation is aborted.

If there are more than 24 SCLK cycles when $\overline{\text{CS}}$ is driven low in four-wire mode or between two starts in three-wire mode, writing operation is prohibited while normal reading operation can be completed by taking the first 24 SCLK cycles as the valid ones. However, the reading result might not be the intended one.

A read access to an invalid address returns all zero. A write access to an invalid address is discarded.

Table-8 and Table-9 list the read or write result in different conditions.

Table-8 Read / Write Result in Four-Wire Mode

	Condition	Result		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastData Register Update
	note 2	>=24	Normal Read	Yes
Read	note 2	<24	Partial Read	No
	No	=24	Normal Write	Yes
	No	!=24	No Write	No
Write	Yes	-	No Write	No

Note 1: The number of SCLK cycles when \overline{CS} is driven low or the number of SCLK cycles before timeout if any.

Note 2: '-' stands for Don't Care.

Table-9 Read / Write Result in Three-Wire Mode

	Condition	Res	sult		
Operation	Timeout	SCLK Cycles ^{note 1}	Read/Write Status	LastData Register Update	
	No	>=24 ^{note 2}	Normal Read	Yes	
	Timeout after 24 cycles	>24	Normal Read	Yes	
	Timeout before 24 cycles	_note 3	Partial Read	No	
Read	Timeout at 24 cycles	=24	Normal Read	Yes	
	No	=24	Normal Write	Yes	
	No	!=24	No Write	No	
Write	Yes	-	No Write	No	

Note 1: The number of SCLK cycles between 2 starts or the number of SCLK cycles before timeout if any.

Note 2: There is no such case of less than 24 SCLK cycles when there is no timeout in three-wire mode, because the first few SCLK cycles in the next operation is counted into this operation. In this case, data is corrupted.

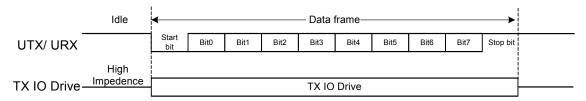
Note 3: '-' stands for Don't Care.

4.2 UART INTERFACE

The UART interface is of 8-bit data only, with no parity checking features.

A read/write transaction is composed of 6 bytes' transfer, starting always from the host transmitting the first byte 'FEH'. The second byte is referenced as RW_ADDRESS, which has a R/W bit (bit7) and 7 address bits (bit6-0).

Upon receiving commands from the host, the M90E26 will send data and/or checksum bytes back to the host within 5ms if the checksum is confirmed to be correct. Interval between successive UART bytes from the M90E26 is 5 bits maximum.


The M90E26 will time out the current transaction if the host byte interval (idling time between two successive bytes) is greater than 20ms. Once transaction timeout or checksum failure, the M90E26 will abort the current transaction and wait for the starting byte 'FEH' of the new transaction and ignore other data that received. The host needs to have a timeout scheme to detect transaction failure. In addition, host needs to wait at least 20ms to start a new transaction to allow the M90E26 to recover from a failure condition.

UART baud rate is determined by the host, and it can be auto-detected by the M90E26. The baud rates supported are 2400 and 9600. The first byte (FEH) is used in detecting the baud-rate. The baud-rate of a transaction shall be kept unchanged. For a new transaction, host may change the baud rate. However, it is suggested that boad rate remain the same in application.

The 8-bit data in TX/RX pin is shifted in a LSB (bit0) first manner.

4.2.1 BYTE LEVEL TIMING

The timing for each byte is as shown in Figure-7.

Note: The UTX pin will be in high impedance state when not transmitting

Figure-7 UART Byte Level Timing

4.2.2 WRITE TRANSACTION

A complete write transaction is composed of six bytes, five from the host and one from the M90E26 as shown in Figure-8.

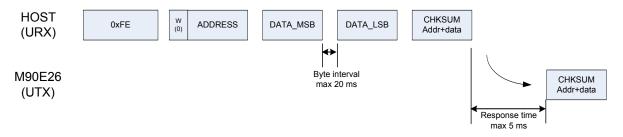


Figure-8 Write Transaction

4.2.3 READ TRANSACTION

A complete read transaction is composed of six bytes, three from the host and three from the M90E26 as shown in Figure-9.

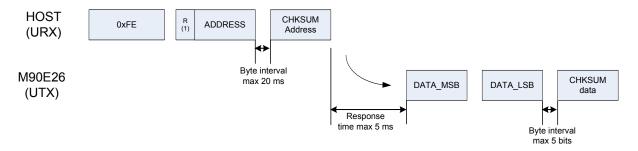


Figure-9 Read Transaction

4.2.4 CHECKSUM

Checksum is done by adding the bytes as unsigned numbers, dropping the overflow bits, and taking the result as the checksum.

Checksum is calculated with address, data or address+data, depending on the transaction type:

Write Transaction:

Host Checksum = RW_Address+DATA_MSB+DATA_LSB M90E26 Checksum = RW_Address+DATA_MSB+DATA_LSB

Read Transaction:

Host Checksum = RW_Address M90E26 Checksum = DATA_MSB + DATA_LSB

4.3 WARNOUT PIN FOR FATAL ERROR WARNING

Fatal error warning is raised through the WarnOut pin in two cases: checksum calibration error and voltage sag.

Calibration Error

The M90E26 performs diagnosis on a regular basis for important parameters such as calibration parameters and metering configuration. When checksum is not correct, the CalErr[1:0] bits (SysStatus, 01H) are set, and both the WarnOut pin and the IRQ pin are asserted. When checksum is not correct, the metering part does not work to prevent a large number of pulses during power-on or any abnormal situation upon incorrect parameters.

Voltage Sag

Voltage sag is detected when voltage is continuously below the voltage sag threshold for one cycle which starts from any zero-crossing point. Voltage threshold is configured by the SagTh register (03H). Refer to section 6.5.

When voltage sag occurs, the SagWarn bit (SysStatus, 01H) is set and the WarnOut pin is asserted if the FuncEn register (02H) enables voltage sag warning through the WarnOut pin. This function helps reduce power-down detection circuit in system design. In addition, the method of judging voltage sag by detecting AC side voltage eliminates the influence of large capacitor in traditional rectifier circuit, and can detect voltage sag earlier.

4.4 LOW COST IMPLEMENTATION IN ISOLATION WITH MCU

The following functions can be achieved at low cost when the M90E26 is isolated from the MCU:

SPI/UART: MCU can perform read and write operations through low speed optocoupler (e.g. PS2501) when the M90E26 is isolated from the MCU. For the SPI interface, it can be either of 3-wire or 4-wire.

Energy Pulses CFx: Energy can be accumulated by reading values in corresponding energy registers. CFx can also connect to the optocoupler and the energy pulse light can be turned on by CFx.

Fatal Error WarnOut: Fatal error can be acquired by reading the CalErr[1:0] bits (SysStatus, 01H).

IRQ: IRQ interrupt can be acquired by reading the SysStatus register (01H).

Reset: The M90E26 is reset when '789AH' is written to the software reset register (SoftReset, 00H).

5 REGISTER

5.1 REGISTER LIST

Table-10 Register List

Register Address	Register Name	Read/Write Type	Functional Description	Page	
<u>.</u>		Status and	Special Register		
00H	SoftReset	W	Software Reset	P 22	
01H	SysStatus	R/C	System Status	P 23	
02H	FuncEn	R/W	Function Enable	P 24	
03H	SagTh	R/W	Voltage Sag Threshold	P 24	
04H	SmallPMod	R/W	Small-Power Mode	P 25	
06H	LastData	R	Last Read/Write SPI/UART Value	P 25	
•	Me	etering Calibration a	and Configuration Register		
08H	LSB	R/W	RMS/Power 16-bit LSB	P 26	
20H	CalStart	R/W	Calibration Start Command	P 26	
21H	PLconstH	R/W	High Word of PL_Constant	P 27	
22H	PLconstL	R/W	Low Word of PL_Constant	P 27	
23H	Lgain	R/W	L Line Calibration Gain	P 28	
24H	Lphi	R/W	L Line Calibration Angle	P 28	
25H	Ngain	R/W	N Line Calibration Gain	P 28	
26H	Nphi	R/W	N Line Calibration Angle	P 29	
27H	PStartTh	R/W	Active Startup Power Threshold	P 29	
28H	PNolTh	R/W	Active No-Load Power Threshold	P 29	
29H	QStartTh	R/W	Reactive Startup Power Threshold	P 30	
2AH	QNolTh	R/W	Reactive No-Load Power Threshold	P 30	
2BH	MMode	R/W	Metering Mode Configuration	P 31	
2CH	CS1	R/W	Checksum 1	P 33	
		Measurement (Calibration Register		
30H	AdjStart	R/W	Measurement Calibration Start Command	P 34	
31H	Ugain	R/W	Voltage rms Gain	P 34	
32H	lgainL	R/W	L Line Current rms Gain	P 35	
33H	IgainN	R/W	N Line Current rms Gain	P 35	
34H	Uoffset	R/W	Voltage Offset	P 35	
35H	IoffsetL	R/W	L Line Current Offset	P 36	
36H	IoffsetN	R/W	N Line Current Offset	P 36	
37H	PoffsetL	R/W	L Line Active Power Offset	P 36	
38H	QoffsetL	R/W	L Line Reactive Power Offset	P 37	
39H	PoffsetN	R/W	N Line Active Power Offset	P 37	
3AH	QoffsetN	R/W	N Line Reactive Power Offset	P 37	
3BH	CS2	R/W	Checksum 2	P 38	
•		Energ	y Register		
40H	APenergy	R/C	Forward Active Energy	P 39	
41H	ANenergy	R/C	Reverse Active Energy		
42H	ATenergy	R/C	Absolute Active Energy	P 40	
43H	RPenergy	R/C	Forward (Inductive) Reactive Energy	P 41	

Table-10 Register List (Continued)

Register Address	Register Name	Read/Write Type	Functional Description	Page
44H	RNenergy	R/C	Reverse (Capacitive) Reactive Energy	P 41
45H	RTenergy	R/C	Absolute Reactive Energy	P 42
46H	EnStatus	R	Metering Status	P 43
<u>"</u>		Measure	ment Register	
48H	Irms	R	L Line Current rms	P 44
49H	Urms	R	Voltage rms	P 44
4AH	Pmean	R	L Line Mean Active Power	P 45
4BH	Qmean	R	L Line Mean Reactive Power	P 45
4CH	Freq	R	Voltage Frequency	P 46
4DH	PowerF	R	L Line Power Factor	P 46
4EH	Pangle	R	Phase Angle between Voltage and L Line Current	P 47
4FH	Smean	R	L Line Mean Apparent Power	P 47
68H	Irms2	R	N Line Current rms	P 48
6AH	Pmean2	R	N Line Mean Active Power	P 48
6BH	Qmean2	R	N Line Mean Reactive Power	P 49
6DH	PowerF2	R	N Line Power Factor	P 49
6EH	Pangle2	R	Phase Angle between Voltage and N Line Current	P 50
6FH	Smean2	R	N Line Mean Apparent Power	P 50

5.2 STATUS AND SPECIAL REGISTER

SoftReset Software Reset

Address: 00H Type: Write Default Value: 0000H 15 14 13 12 10 9 8 11 SoftReset15 SoftReset14 SoftReset13 SoftReset12 SoftReset11 SoftReset10 SoftReset9 SoftReset8 6 5 4 3 2 1 0 SoftReset7 SoftReset6 SoftReset5 SoftReset4 SoftReset3 SoftReset2 SoftReset1 SoftReset0 Bit Description Name 15 - 0 SoftReset[15:0] Software reset register. The M90E26 resets if only 789AH is written to this register.

SysStatus System Status

	Address: 01H Type: Read/Clear Default Value: 0000H									
15	14	13	12	11	10	9	8			
CalErr1	CalErr	0 AdjErr1	AdjErr0	-	-	-	-			
7	6	5	4	3	2	1	0			
LNchange	RevQcl	ng RevPchg	-	-	-	SagWarn	-			
Bit	Name			Descri	ption					
15 - 14	CalErr[1:0]	00: CS1 checksur	e CS1 checksum s n correct (default) n error. At the same	tatus.	-	ed.				
13 - 12	These bits indicate CS2 checksum status. AdjErr[1:0] O0: CS2 checksum correct (default) 11: CS2 checksum error.									
11 - 8	-	Reserved.								
7	LNchange	This bit indicates of the control of		y change of the	metering line (L	line and N line).				
6	RevQchq	0: direction of read 1: direction of read	whether there is an ctive energy no cha ctive energy chang oled by the RevQE	inge (default) ed		active energy.				
5	RevPchg	0: direction of acti 1: direction of acti	whether there is an we energy no chan we energy changed oled by the RevPE	ge (default)		tive energy.				
4 - 2	-	Reserved.								
1	SagWarn	0: no voltage sag 1: voltage sag Voltage sag is ena	/oltage sag is enabled by the SagEn bit (FuncEn, 02H). /oltage sag status can also be reported by the WarnOut pin. It is enabled by the SagWo bit(FuncEn							
0	-	Reserved.								

Note: Any of the above events will prompt the IRQ pin to be asserted, which can be supplied to external MCU as an interrupt.

FuncEn Function Enable

Address: 02H Type: Read/Write Default Value: 000CH										
15	14	13	12	11	10	9	8			
-	-	-	-	-	-	-	-			
7	6	5	4	3	2	1	0			
-	-	SagEn	SagWo	RevQEn	RevPEn	-	-			
Bit	Bit Name Description									
15 - 6	-	Reserved.								
5	SagEn	This bit determines v 0: disable (default) 1: enable	vhether to enable	e the voltage sag	interrupt.					
4	SagWo	This bit determines v 0: disable (default) 1: enable	vhether to enable	e voltage sag to l	be reported by th	ne WarnOut pin.				
3	RevQEn	This bit determines whether to enable the direction change interrupt of reactive energy. 0: disable 1: enable (default)								
2	RevPEn	This bit determines whether to enable the direction change interrupt of active energy. O: disable 1: enable (default)								
1 - 0	-	Reserved.								

SagTh Voltage Sag Threshold

	rotago oug rinconota									
Address: 03H Type: Read/Write Default Value: 1D6AH										
15	15 14		13	12	11	10	9	8		
SagTh	15	SagTh1	4 SagTh13	SagTh12	SagTh11	SagTh10	SagTh9	SagTh8		
7		6	5	4	3	2	1	0		
SagTh	17	SagTh	SagTh5	SagTh4	SagTh3	SagTh2	SagTh1	SagTh0		
D.,	1	N	T							
Bit		Name			Descri	ption				
15 - 0	Sa	agTh[15:0]	Voltage sag threshold configuration. Data format is XXX.XX. Unit is V. The power-on value of SagTh is 1D6AH, which is calculated by 22000*sqrt(2)*0.78/(4*Ugain/32768) For details, please refer to related application note 46102.							

Small-Power Mode

Address: 04H Type: Read/Write Default Value: 0000H										
1	15		13	12	11	10	9	8		
SmallF	PMod1	SmallPMo 4	SmallPMod1	SmallPMod1 2	SmallPMod1 1	SmallPMod1 0	SmallPMod9	SmallPMod8		
7	7	6	5	4	3	2	1	0		
SmallF	PMod7	SmallPMo	od6 SmallPMod5	SmallPMod4	SmallPMod3	SmallPMod2	SmallPMod1	SmallPMod0		
Bit		Name			Descri	ption				
15 - 0	15 - 0 SmallPMod[15:0]		Small-power mode A987H: small-power power in small-power power in normal moodthers: Normal moodsmall-power mode	r mode. The relat er mode and norr de = power in sm de.	mal mode is: nall-power mode	*Igain*Ugain /(10		line active/reactive		

LastData Last Read/Write SPI/UART Value

Ty	Address: 06H Type: Read Default Value: 0000H											
	15 1		14	13	12	11	10	9	8			
	LastDa	ata15	LastData	14 LastData1	3 LastData12	LastData11	LastData10	LastData9	LastData8			
	7		6	5	4	3	2	1	0			
	LastDa	ata7	LastData	6 LastData5	LastData4	LastData3	LastData2	LastData1	LastData0			
Bit Name Description					iption							
	15 - 0	LastD)ata[15:0]	This register stor and Table-9.	es the data that is	ust read or writte	en through the SI	PI/UART interfac	ce. Refer to Table-8			

5.3 METERING/ MEASUREMENT CALIBRATION AND CONFIGURATION

5.3.1 METERING CALIBRATION AND CONFIGURATION REGISTER

LSB RMS/Power 16-bit LSB

Тур	Address: 08H Type: Read Default Value: 0000H										
	15	14	13	12	11	10	9	8			
	LSB15	LSB14	LSB13	LSB12	LSB11	LSB10	LSB0	LSB8			
	7	6	5	4	3	2	1	0			
	LSB7	LSB6	LSB5	LSB4	LSB3	LSB2	LSB1	LSB0			
	,										
	Bit	Name			Descri	ption					
	15 - 0 LSB[15:0] 16-bit LSB of the RMS or Power registers. Note that reading of the LSB[7:0] bits is always 0.										

CalStart Calibration Start Command

	Address: 20H Type: Read/Write Default Value: 6886H									
15	14	13	12	11	10	9	8			
CalStart1	5 CalStart	14 CalStart13	CalStart12	CalStart11	CalStart10	CalStart9	CalStart8			
7	6	5	4	3	2	1	0			
CalStart7	' CalStart	6 CalStart5	CalStart4	CalStart3	CalStart2	CalStart1	CalStart0			
	<u> </u>									
Bit	Name	Description								
Metering calibration start command: 6886H: Power-on value. Metering function is disabled. 5678H: Metering calibration startup command. After 5678H is written to this register, registers 2 resume to their power-on values. The M90E26 starts to meter and output energy pulses register of the correctness of diagnosis. The CalErr[1:0] bits (SysStatus, 01H) are not set and the WIRQ pins do not report any warning/interrupt. 8765H: Check the correctness of the 21H-2BH registers. If correct, normal metering. If not correct ing function is disabled, the CalErr[1:0] bits (SysStatus, 01H) are set and the WarnOut/II report warning/interrupt. Others: Metering function is disabled. The CalErr[1:0] bits (SysStatus, 01H) are set and the Warning/interrupt.						y pulses regardless t and the WarnOut/ not correct, meter- WarnOut/IRQ pins				

PLconstH High Word of PL_Constant

T	Address: 21H Type: Read/Write Default Value: 0015H										
	15 14			13	12	11	10	9	8		
	PLconstH1	15 PLconstl	H14	PLconstH13	PLconstH12	PLconstH11	PLconstH10	PLconstH9	PLconstH8		
	7	6		5	4	3	2	1	0		
	PLconstH	7 PLconst	H6	PLconstH5	PLconstH4	PLconstH3	PLconstH2	PLconstH1	PLconstH0		
	Bit	The PLconstH[15:0] and PLconstL[15:0] bits are high word and low word of PL_Constant respectively. PL_Constant is a constant which is proportional to the sampling ratios of voltage and current, a									
PLcon-stH[15:0] PLcon-stH[15:0] PLcon-stH[15:0] PLcon-stH[15:0] inversely proportional to the Meter Constant. PL_Constant is a threshold for energy calculated M90E26, i.e., energy larger than PL_Constant will be accumulated in the corresponding energy and then output on CFx. It is suggested to set PL_constant as a multiple of 4 so as to double or redouble Meter Const current state to save verification time. Note: PLconstH takes effect after PLconstL are configured. For details, please refer to related application note 46102.						ng energy registers					

PLconstL Low Word of PL_Constant

Т	ddress: 22H ype: Read/W efault Value:									
	15	14	13	12	11	10	9	8		
	PLconstL1	5 PLconstl	_14 PLconstL13	PLconstL12	PLconstL11	PLconstL10	PLconstL9	PLconstL8		
	7	6	5	4	3	2	1	0		
	PLconstL7 PLcons		L6 PLconstL5	PLconstL4	PLconstL3	PLconstL2	PLconstL1	PLconstL0		
Ľ										
	Bit	Name	Description							
	15 - 0	PLcon- stL[15:0]	The PLconstH[15: It is suggested to 46102.	•			_	ant respectively. ed application note		

Lgain L Line Calibration Gain

Address: 23 Type: Read Default Valu	/Write								
15		14		13	12	11	10	9	8
Lgain	15	Lgain14	4	Lgain13	Lgain12	Lgain11	Lgain10	Lgain9	Lgain8
7		6		5	4	3	2	1	0
Lgair	7	Lgain6	;	Lgain5	Lgain4	Lgain3	Lgain2	Lgain1	Lgain0
Bit Name Description									
15 - 0 Lgain[15:0] L line calibration gain. For details, please refer to related application note 46102.									

Lphi L Line Calibration Angle

Address: 24H Type: Read/W Default Value:	/rite							
15	14	13	12	11	10	9	8	
Lphi15	-	-	-	-	-	Lphi9	Lphi8	
7	6	5	4	3	2	1	0	
Lphi7	Lphi6	Lphi5	Lphi4	Lphi3	Lphi2	Lphi1	Lphi0	
D:4	No			D	4!			
Bit	Name	l line celleneties see		Descri	•	:	00	
15 - 0	15 - 0 Lphi[15:0] L line calibration phase angle. For details, please refer to related application note 46102.							

Ngain N Line Calibration Gain

Address: 25H Type: Read/W Default Value:	/rite						
15	14	13	12	11	10	9	8
Ngain15	Ngain1	4 Ngain13	Ngain12	Ngain11	Ngain10	Ngain9	Ngain8
7	6	5	4	3	2	1	0
Ngain7	Ngain6	Ngain5	Ngain4	Ngain3	Ngain2	Ngain1	Ngain0
Bit	Name			Descri	intion		
15 - 0	Ngain[15:0]	N line calibration ga	in. For details, pl		•	note 46102.	

Nphi N Line Calibration Angle

	ress: 26H							
	e: Read/W ault Value:							
	15	14	13	12	11	10	9	8
	Nphi15	-	-	-	-	-	Nphi9	Nphi8
	7	6	5	4	3	2	1	0
	Nphi7	Nphi6	Nphi5	Nphi4	Nphi3	Nphi2	Nphi1	Nphi0
	1							
Bit Name Description								
15 - 0 Nphi[15:0] N line calibration phase angle. For details, please refer to related application note 46102.								102.

PStartTh Active Startup Power Threshold

Address: 27h Type: Read/\ Default Value	Vrite								
15	14	13	12	11	10	9	8		
PStartTh	15 PStartTh	14 PStartTh13	PStartTh12	PStartTh11	PStartTh10	PStartTh9	PStartTh8		
7	6	5	4	3	2	1	0		
PStartTh	n7 PStartTh	n6 PStartTh5	PStartTh4	PStartTh3	PStartTh2	PStartTh1	PStartTh0		
Bit	Name			Descri	ption				
15 - 0	15 - 0 PStartTh[15:0] Active startup power threshold. For details, please refer to related application note 46102.								

PNoITh Active No-Load Power Threshold

Address: 28H Type: Read/W Default Value:	/rite							
15	14	13	12	11	10	9	8	
PNolTh1	5 PNolTh	PNoITh13	PNolTh12	PNolTh11	PNolTh10	PNolTh9	PNoITh8	
7	6	5	4	3	2	1	0	
PNoITh7	' PNolTh	6 PNolTh5	PNoITh4	PNolTh3	PNolTh2	PNolTh1	PNoITh0	
Bit	Name			Descri	ption			
15 - 0	15 - 0 PNolTh[15:0] Active no-load power threshold. For details, please refer to related application note 46102.							

QStartTh Reactive Startup Power Threshold

Address: 29l Type: Read/ Default Value	Write							
15	14	13	12	11	10	9	8	
QStartTh	n15 QStartTh	14 QStartTh13	QStartTh12	QStartTh11	QStartTh10	QStartTh9	QStartTh8	
7	6	5	4	3	2	1	0	
QStartT	h7 QStartTh	n6 QStartTh5	QStartTh4	QStartTh3	QStartTh2	QStartTh1	QStartTh0	
Bit	Name			Descri	iption			
15 - 0	15 - 0 QStartTh[15:0] Reactive startup power threshold. For details, please refer to related application note 46102.							

QNoITh Reactive No-Load Power Threshold

Address: 2AH Type: Read/W Default Value:	/rite								
15	14	13	12	11	10	9	8		
QNolTh1	5 QNoITh	14 QNolTh13	QNolTh12	QNolTh11	QNolTh10	QNolTh9	QNolTh8		
7	6	5	4	3	2	1	0		
QNolTh7	' QNolTh	6 QNolTh5	QNolTh4	QNolTh3	QNolTh2	QNolTh1	QNolTh0		
Bit	Name			Descri	ption				
15 - 0	15 - 0 QNolTh[15:0] Reactive no-load power threshold. For details, please refer to related application note 46102.								

MMode Metering Mode Configuration

Address: 2BH											
Type: Read/W Default Value:											
15	14	13	12	11	10)	9	8			
Lgain2	Lgain1	Lgain0	Ngain1	Ngain0	LNS	Sel	DisHPF1	DisHPF0			
7	6	5	4	3	2		1	0			
Amod	Rmod	ZXCon	1 ZXCon0	Pthresh	3 Pthre	esh2	Pthresh1	Pthresh0			
Bit	Name			Description							
		L line current ga	ain, default value i	is '100'.							
			Lgain2	Lgain1	Lgain0	Curre	nt Channel Gai	n			
15 - 13	Lgain[2:0]		0	X 0	X 0		4				
				0	1		8				
				1	0		16 24	_			
12 - 11	Ngain[1:0]	N line current ga 00: 2 01: 4 10: 1 (default)	ain								
10	LNSel	11: 1	-	ine or N line wh	en metering r	node is	set to flexible m	ode by MMD1 and			
			igure the High Fill configuration are	applicable to al	I channels:			PF in serial: HPF1			
	D: UDEM 03		DisHPF1	DisHPF () HPI	F Config	guration and HPF0				
9 - 8	DisHPF[1:0]		0	0	enabi	e HPF1 (defau					
			0	1	enable l	HPF1, di	sable HPF0;				
			1	0	disable	HPF1, e	nable HPF0;				
			1	1	disabl	e HPF1	and HPF0				
7	Amod		active power: verse energy puls rgy pulse output	e output (defau	lt)						
6	Rmod		reactive power: ctive) or reverse (rgy pulse output	(capacitive) ene	rgy pulse outp	out (defa	ult)				

5 - 4	Zxcon[1:0]	zero. 00: positive ze 01: negative zo 10: all zero-cro 11: no zero-cro	ro-crossing ero-crossing ossing: both ossing outpu	positive and t	negative ze	ro-crossing (de		e crosse
		These bits con	figure the L	line and N li	ne power dif	ference thresh	old in anti-tampering mode.	
			Pthresh	Pthresh	Pthresh	<u> </u>		
			3	2	1	Pthresh0	Threshold	
			0	0	0	0	12.5%	
			0	0	0	1	6.25%	
			0	0	1	0	3.125% (default)	
			0	0	1	1	1.5625%	
			0	1	0	0	1%	
			0	1	0	1	2%	
3 - 0	Pthresh[3:0]		0	1	1	0	3%	
			0	1	1	1	4%	
			1	0	0	0	5%	
			1	0	0	1	6%	
			1	0	1	0	7%	
			1	0	1	1	8%	
			1	1	0	0	9%	
			1	1	0	1	10%	
			1	1	1	0	11%	
			1	1	1	1	12%	

CS1 Checksum 1

Address: 2CH Type: Read/Write Default Value: 0000H

15	14	13	12	11	10	9	8
CS1_15	CS1_14	CS1_13	CS1_12	CS1_11	CS1_10	CS1_9	CS1_8
7	6	5	4	3	2	1	0
CS1_7	CS1_6	CS1_5	CS1_4	CS1_3	CS1_2	CS1_1	CS1_0

Bit	Name		Desci	ription		Description							
		•	The CS1 register should be written after the 21H-2BH registers are written. Suppose the high byte and the low byte of the 21H-2BH registers are shown in below table.										
			Register Address	High Byte	Low Byte								
			21H	H ₂₁	L ₂₁								
			22H	H ₂₂	L ₂₂								
			23H	H ₂₃	L ₂₃								
			24H	H ₂₄	L ₂₄								
			25H	H ₂₅	L ₂₅								
			26H	H ₂₆	L ₂₆								
			27H	H ₂₇	L ₂₇								
			28H	H ₂₈	L ₂₈								
15 - 0	CS1[15:0]		29H	H ₂₉	L ₂₉								
.0 0	001[10.0]		2AH	H _{2A}	L _{2A}								
			2BH	H _{2B}	L _{2B}								
		L _{2B} The M90E26 calculates CS is different when CalStart=pins are asserted.	ter is: L_{2C} =MOD(H_{21} + H_{22}) ster is: H_{2C} = H_{21} XOR H_{2} S1 regularly. If the value of 8765H, the CalErr[1:0] bits	YOR X of the CS1 resist (SysStatus	OR H_{2B} XO egister and the solution of the	_{2B} , 2 ⁸) R L ₂₁ XOR L ₂₂ XOR XOR he calculation by the M90E26 set and the WarnOut and IRQ 0E26, which is different from							

5.3.2 MEASUREMENT CALIBRATION REGISTER

AdjStart

Measurement Calibration Start Command

Address: 30H Type: Read/Write Default Value: 6886H										
15	14	13	12	11	10	9	8			
AdjStart1	5 AdjStart	14 AdjStart13	AdjStart12	AdjStart11	AdjStart10	AdjStart9	AdjStart8			
7	6	5	4	3	2	1	0			
AdjStart7	AdjStart	6 AdjStart5	AdjStart4	AdjStart3	AdjStart2	AdjStart1	AdjStart0			
Bit	Name			Descri	ption					
15 - 0	AdjStart[15:0]	6886H: Power-on v 5678H: Measuremer 3AH resume ness of diagr report any inte 8765H: Check the comeasurement reports interru	Description Beasurement Calibration Start Command Beasurement Start Command Beasurement Calibration Start Command Beasurement Start Comma							

Ugain Voltage rms Gain

Address: 31H Type: Read/Write Default Value: 6720H 15 14 13 12 11 10 9 8 Ugain15 Ugain14 Ugain13 Ugain12 Ugain11 Ugain10 Ugain9 Ugain8 7 6 5 4 3 2 1 0 Ugain7 Ugain6 Ugain5 Ugain4 Ugain3 Ugain2 Ugain1 Ugain0 Bit Name Description Voltage rms Gain. For details, please refer to related application note 46102. 15 - 0 Ugain[15:0] Note: the Ugain15 bit should only be '0'

IgainL L Line Current rms Gain

Address: 32H												
	Type: Read/Write Default Value: 7A13H											
Belault Value.	Soldan Value. 17 (16)											
15	14	13	12	11	10	9	8					
IgainL15	lgainL1	4 IgainL13	lgainL12	lgainL11	IgainL10	IgainL9	IgainL8					
7	6	5	4	3	2	1	0					
IgainL7	lgainL6	lgainL5	lgainL4	IgainL3	lgainL2	lgainL1	lgainL0					
Bit	Name	Name Description										
15 - 0	IgainL[15:0]	[15:0] L Line Current rms Gain, For details, please refer to related application note 46102.										

IgainN N Line Current rms Gain

Address: 33H Type: Read/Write Default Value: 7530H											
15 14 13 12 11 10						9	8				
IgainN15	i IgainN1	4 IgainN13	IgainN12	IgainN11	IgainN10	IgainN9	IgainN8				
7	6	5	4	3	2	1	0				
lgainN7	lgainN6	lgainN5	IgainN4	IgainN3	IgainN2	IgainN1	IgainN0				
Bit	Name		Description								
15 - 0	IgainN[15:0]	N Line Current rms (Gain. For details,	, please refer to r	related applicatio	n note 46102.					

Uoffset Voltage Offset

Address: 34H Type: Read/Write Default Value: 0000H															
15	14	13	12	11	10	9	8								
Uoffset1	5 Uoffset1	4 Uoffset13	Uoffset12	Uoffset11	Uoffset10	Uoffset9	Uoffset8								
7	6	5	4	3	2	1	0								
Uoffset7	Uoffset	6 Uoffset5	Uoffset4	Uoffset3	Uoffset2	Uoffset1	Uoffset0								
Bit	Name		Description												
15 - 0	Uoffset[15:0]	Voltage offset. For ca	alculation metho	d, please refer to	related applicat	ion note 46102.	tage offset. For calculation method, please refer to related application note 46102.								

IoffsetL L Line Current Offset

	Address: 35H Type: Read/Write Default Value: 0000H											
15 14 13 12 11 10 9 8												
loffsetL15	5 loffsetL1	4 loffsetL13	loffsetL12	loffsetL11	loffsetL10	loffsetL9	loffsetL8					
7	6	5	4	3	2	1	0					
loffsetL7	loffsetL	6 loffsetL5	loffsetL4	loffsetL3	loffsetL2	loffsetL1	loffsetL0					
Bit	Name		Description									
15 - 0	loffsetL[15:0]	L line current offset.	For calculation n	nethod, please re	efer to related ap	plication note 46	3102.					

IoffsetN N Line Current Offset

Address: 36H Type: Read/W Default Value:	/rite									
15	14	13	12	11	10	9	8			
IoffsetN1	5 loffsetN ²	l4 loffsetN13	IoffsetN12	loffsetN11	IoffsetN10	loffsetN9	IoffsetN8			
7	6	5	4	3	2	1	0			
loffsetN7	' loffsetN	6 IoffsetN5	IoffsetN4	IoffsetN3	loffsetN2	loffsetN1	loffsetN0			
Bit	Name		Description							
15 - 0	IoffsetN[15:0]	N line current offset.	For calculation r	method, please r	efer to related ap	plication note 46	6102.			

PoffsetL L Line Active Power Offset

Ту	ddress: 37H pe: Read/W efault Value:	/rite									
	15	14	13	12	11	10	9	8			
	PoffsetL15 PoffsetL1		14 PoffsetL13	PoffsetL12	PoffsetL11	PoffsetL10	PoffsetL9	PoffsetL8			
	7	6	5	4	3	2	1	0			
	PoffsetL7	7 PoffsetL	6 PoffsetL5	PoffsetL4	PoffsetL3	PoffsetL2	PoffsetL1	PoffsetL0			
	Bit	Name		Description							
	15 - 0	PoffsetL[15:0]		ne active power offset. mplement, MSB is the sign bit. For calculation method, please refer to related application note 46102.							

QoffsetL L Line Reactive Power Offset

Ту	ddress: 38H /pe: Read/W efault Value:	/rite									
15 14 13 12 11 10 9 8								8			
	QoffsetL15 QoffsetL1		14 QoffsetL13	QoffsetL12	QoffsetL11	QoffsetL10	QoffsetL9	QoffsetL8			
	7 6		5	4	3	2	1	0			
	QoffsetL7	7 QoffsetL	.6 QoffsetL5	QoffsetL4	QoffsetL3	QoffsetL2	QoffsetL1	QoffsetL0			
	Bit	Name		Description							
	15 - 0	QoffsetL[15:0]		ine reactive power offset. omplement, MSB is the sign bit. For calculation method, please refer to related application note 46102.							

PoffsetN N Line Active Power Offset

Туре	Address: 39H Type: Read/Write Default Value: 0000H											
15 14			13	12	11	10	9	8				
	PoffsetN15 PoffsetN14		14 PoffsetN13	PoffsetN12	PoffsetN11	PoffsetN10	PoffsetN9	PoffsetN8				
	7	6	5	4	3	2	1	0				
	PoffsetN7	7 PoffsetN	l6 PoffsetN5	PoffsetN4	PoffsetN3	PoffsetN2	PoffsetN1	PoffsetN0				
	Bit	Name		Description								
	15 - 0	PoffsetN[15:0]		line active power offset. complement, MSB is the sign bit. For calculation method, please refer to related application note 46102.								

QoffsetN N Line Reactive Power Offset

Address: 3A Type: Read Default Valu	/Write	1								
15		14	13	12	11	10	9	8		
Qoffsetl	N15	QoffsetN	14 QoffsetN13	QoffsetN12	QoffsetN11	QoffsetN10	QoffsetN9	QoffsetN8		
7		6	5	4	3	2	1	0		
Qoffset	:N7	QoffsetN	16 QoffsetN5	QoffsetN4	QoffsetN3	QoffsetN2	QoffsetN1	QoffsetN0		
Bit	Na	me	ne Description							
15 - 0	Qoffset			line reactive power offset. omplement, MSB is the sign bit. For calculation method, please refer to related application note 46102.						

CS2 Checksum 2

Address: 3BH Type: Read/Write Default Value: 0000H

15	14	13	12	11	10	9	8
CS2_15	CS2_14	CS2_13	CS2_12	CS2_11	CS2_10	CS2_9	CS2_8
7	6	5	4	3	2	1	0
CS2_7	CS2_6	CS2_5	CS2_4	CS2_3	CS2_2	CS2_1	CS2_0

Bit	Name		De	scription		
		The CS2 register should the low byte of the 31H-3		_		ten. Suppose the high byte and
			Register Address	High Byte	Low Byte	
			31H	H ₃₁	L ₃₁	
			32H	H ₃₂	L ₃₂	
			33H	H ₃₃	L ₃₃	
			34H	H ₃₄	L ₃₄	
			35H	H ₃₅	L ₃₅	
			36H	H ₃₆	L ₃₆	
			37H	H ₃₇	L ₃₇	
15 - 0	CS2[15:0]		38H	H ₃₈	L ₃₈	
			39H	H ₃₉	L ₃₉	
			3AH	H _{3A}	L _{3A}	I
		L _{3A} The M90E26 calculates (is different when AdjStart	ster is: L _{3B} =MOD(H ₃₁ +H gister is: H _{3B} =H ₃₁ XOR CS2 regularly. If the value =8765H, the AdjErr[1:0]	H ₃₂ XOR e of the CS2 bits (SysSta	. XOR H_{3A} 2 2 register and atus, 01H) ar	$XOR\ L_{31}\ XOR\ L_{32}\ XOR\\ XOF$ d the calculation by the M90E26

5.4 ENERGY REGISTER

Theory of Energy Registers

The internal energy resolution is 0.01 pulse. Within 0.01 pulse, forward and reverse energy are counteracted. When energy exceeds 0.01 pulse, the respective forward/reserve energy is increased. The forward and reverse energy are not counteracted in absolute energy registers. Take the example of active energy, suppose:

T0: Forward energy is 12.34 pulses and reverse energy is 1.23 pulses;

From T0 to T1: 0.005 forward pulse appeared From T1 to T2: 0.004 reverse pulse appeared From T2 to T3: 0.003 reverse pulse appeared

	T0	T1	T2	Т3
Forward Active Pulse	12.34	12.345	12.341	12.34
Reserve Active Pulse	1.23	1.23	1.23	1.232
Absolute Active Pulse	13.57	13.575	13.579	13.582

When forward/reverse energy or absolute energy reaches 0.1 pulse, the respective register is updated. When forward/reverse energy or absolute energy reaches 1 pulse, CFx pins output pulse and the REVP/REVQ bits (EnStatus, 46H) are updated.

Absolute energy might be more than the sum of forward and reverse energies. If "consistency" is required between absolute energy and forward/reverse energy in system application, absolute energy can be obtained by calculating the readout of the forward and reverse energy registers.

APenergy Forward Active Energy

	, , , , , , , , , , , , , , , , , , ,										
T	ddress: 40 ype: Read/ efault Valu	/Clear	00H								
	15		14	13	12	11	10	9	8		
	APenergy15		APenergy	/14 APenergy13	APenergy12	APenergy11	APenergy10	APenergy9	APenergy8		
	7		6	5	4	3	2	1	0		
	APenergy7		APenerg	y6 APenergy5	APenergy4	APenergy3	APenergy2	APenergy1	APenergy0		
_											
Bit Name Description						ption					
	15 - 0 APenergy[15:0]		Data format is XXX	Forward active energy; cleared after read. Data format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. When the accumulation of this register has achieved FFFFH, the continuation accumulation will return to							

ANenergy Reverse Active Energy

Address: 4 Type: Read Default Val	l/Clear	00H							
15		14		13	12	11	10	9	8
ANener	ANenergy15 ANenergy		/14 ANei	nergy13	ANenergy12	ANenergy11	ANenergy10	ANenergy9	ANenergy8
7		6		5	4	3	2	1	0
ANene	rgy7	ANenerg	y6 ANe	energy5	ANenergy4	ANenergy3	ANenergy2	ANenergy1	ANenergy0
Bit Name						Descri	ption		
15 - 0	15 - 0 ANenergy[15:0]		Data forma	everse active energy, cleared after read. ata format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. /hen the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 000H.					

ATenergy Absolute Active Energy

T	ddress: 42 /pe: Read/ efault Valu	Clear								
	15		14		13	12	11	10	9	8
	ATenergy15		ATenergy	/14	ATenergy13	ATenergy12	ATenergy11	ATenergy10	ATenergy9	ATenergy8
	7		6		5	4	3	2	1	0
	ATenergy7		ATenerg	y6	ATenergy5	ATenergy4	ATenergy3	ATenergy2	ATenergy1	ATenergy0
_		1 .		1						
	Bit		Name				Descri	ption		
	15 - 0 ATenergy[15:0]		Data	format is XXXX to the accumulat		ution is 0.1 pulse	e. Maximum is 65 FFFFH, the cont		ılation will return to	

RPenergy Forward (Inductive) Reactive Energy

Т	ddress: 43l ype: Read/ efault Valu	Clear	0H							
	15		14	13		12	11	10	9	8
	RPenergy15 RPenerg		RPenergy	14 RPener	gy13	RPenergy12	RPenergy11	RPenergy10	RPenergy9	RPenergy8
	7		6	5		4	3	2	1	0
	RPenergy7		RPenerg	y6 RPene	rgy5	RPenergy4	RPenergy3	RPenergy2	RPenergy1	RPenergy0
	Bit	ı	Name				Descr	iption		
	15 - 0 RPenergy[15:0]		Data format is	XXXX	•	lution is 0.1 puls	e. Maximum is 6	•	ulation will return to	

RNenergy Reverse (Capacitive) Reactive Energy

T	ddress: 44 ype: Read/ efault Valu	Clear							
	15	1	ļ	13	12	11	10	9	8
	RNenerg	y15 RNene	rgy14	RNenergy13	RNenergy12	RNenergy11	RNenergy10	RNenergy9	RNenergy8
	7	6		5	4	3	2	1	0
	RNenero	gy7 RNen	ergy6	RNenergy5	RNenergy4	RNenergy3	RNenergy2	RNenergy1	RNenergy0
		1							
	Bit	Name				Descri	ption		
	15 - 0 RNene	RNenergy[15	0] Dat	verse (capacitive) a format is XXXX en the accumulation.	(.X pulses. Reso	lution is 0.1 pulse	e. Maximum is 6		ulation will return to

RTenergy Absolute Reactive Energy

Ту	dress: 45l be: Read/ fault Valu	Clear	0H							
	15		14	13	12	11	10	9	8	
	RTenergy15 RTenergy		/14 RTenergy13	RTenergy12	RTenergy11	RTenergy10	RTenergy9	RTenergy8		
	7		6	5	4	3	2	1	0	
	RTenergy7		RTenerg	y6 RTenergy5	RTenergy4	RTenergy3	RTenergy2	RTenergy1	RTenergy0	
Bit Name Description										
	15 - 0 RTenergy[15:0]			Data format is XXX	osolute reactive energy, cleared after read. ata format is XXXX.X pulses. Resolution is 0.1 pulse. Maximum is 6553.5 pulses. then the accumulation of this register has achieved FFFFH, the continuation accumulation will return to 100H.					

EnStatus Metering Status

Address: 46H Type: Read Default Value After Power On: C800H 15 14 13 12 11 10 9 8 Qnoload Pnoload RevQ RevP Lline 7 5 3 2 1 0 6 4 LNMode0 LNMode1 Bit Name Description This bit indicates whether the M90E26 is in reactive no-load status. 15 **Qnoload** 0: not reactive no-load state 1: reactive no-load state This bit indicates whether the M90E26 is in active no-load status. 14 Pnoload 0: not active no-load state 1: active no-load state This bit indicates the direction of the last CF2 (reactive output). 0: reactive forward 13 RevQ 1: reactive reverse Note: This bit is always '0' when the CF2 output is configured to be absolute energy. This bit indicates the direction of the last CF1 (active output). 0: active forward 12 RevP 1: active reverse Note: This bit is always '0' when the CF1 output is configured to be absolute energy. This bit indicates the current metering line in anti-tampering mode. 11 Lline 0: N line 1: L line 10 - 2 Reserved. These bits indicate the configuration of MMD1 and MMD0 pins. Their relationship is as follows: MMD1 MMD0 LNmod1 LNmod0 L/N Metering Mode anti-tampering mode (larger power) 0 0 0 0 0 L line mode (fixed L line) 1 0 1 L+N mode (applicable for single-phase three-1 - 0 LNMode[1:0] 1 0 1 0 wire system) Flexible mode (Line specified by the LNSel bit 1 1 1 (MMode, 2BH)) 1

5.5 MEASUREMENT REGISTER

Irms L Line Current rms

Address: 48H Type: Read Default Value:	0000H						
15	14	13	12	11	10	9	8
Irms15	Irms14	Irms13	Irms12	Irms11	Irms10	Irms9	Irms8
7	6	5	4	3	2	1	0
Irms7	Irms6	Irms5	Irms4	Irms3	Irms2	Irms1	Irms0
Bit	Name			Descri	ption		
L line current rms. Data format is XX.XXX, which corresponds to 0 ~ 65.535A. 15 - 0 Irms[15:0] For cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. example, the register value can be calibrated to 1/2 of the actual value during calibration, then multiple by 2 in application.							

Urms Voltage rms

Address: 49H Type: Read Default Value:									
15	14	13	12	11	10	9	8		
Urms15	Urms1	4 Urms13	Urms12	Urms11	Urms10	Urms9	Urms8		
7	6	5	4	3	2	1	0		
Urms7	Urms6	3 Urms5	Urms4	Urms3	Urms2	Urms1	Urms0		
1									
Bit	Bit Name Description								
15 - 0	15 - 0 Urms[15:0] Voltage rms. Data format is XXX.XX, which corresponds to 0 ~ 655.35V.								

Pmean L Line Mean Active Power

Address Type: Ro Default	ead	0000H						
	15	14	13	12	11	10	9	8
Pm	Pmean15 Pmea		14 Pmean13	Pmean12	Pmean11	Pmean10	Pmean9	Pmean8
	7	6	5	4	3	2	1	0
Pn	nean7	Pmean	6 Pmean5	Pmean4	Pmean3	Pmean2	Pmean1	Pmean0
'								
Bit Name Description								
15 -	15 - 0 Pmea		L line mean active portion of the Complement, MSB is a lift current is specially tiple relationship as the Complement of	s the sign bit. Da handle by MCU				

Qmean L Line Mean Reactive Power

Address: 4BH Type: Read Default Value:							
15	14	13	12	11	10	9	8
Qmean1	5 Qmean	14 Qmean13	Qmean12	Qmean11	Qmean10	Qmean9	Qmean8
7	6	5	4	3	2	1	0
Qmean7	Qmean	6 Qmean5	Qmean4	Qmean3	Qmean2	Qmean1	Qmean0
Bit	Name			Descri	ption		<u> </u>
15 - 0	15 - 0 Qmean[15:0] L line mean reactive power. Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.768kvar. If current is specially handled by MCU, the power of the M90E26 and the actual power have the samultiple relationship as the current.						

Freq Voltage Frequency

Address: 4CH Type: Read Default Value:							
15	14	13	12	11	10	9	8
Freq15	Freq14	Freq13	Freq12	Freq11	Freq10	Freq9	Freq8
7	6	5	4	3	2	1	0
Freq7	Freq6	Freq5	Freq4	Freq3	Freq2	Freq1	Freq0
Bit	Name	Description					
Voltage frequency. 15 - 0 Freq[15:0] Voltage frequency. Data format is XX.XX. Frequency measurement range is 45.00~65.00Hz. For example, 1388H cosponds to 50.00Hz.					mple, 1388H corre		

PowerF L Line Power Factor

	-iiie i owe	i i actoi								
Ту	ldress: 4DH pe: Read efault Value:									
	15	14	13	12	11	10	9	8		
	PowerF1	5 PowerF	4 PowerF13 PowerF12 PowerF11 PowerF10 PowerF9 PowerF8							
	7	6	5	4	3	2	1	0		
	PowerF7	PowerF	6 PowerF5	PowerF4	PowerF3	PowerF2	PowerF1	PowerF0		
	Bit Name Description									
	L line power factor. 15 - 0 PowerF[15:0] L line power factor. Signed, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03 8H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.									

Pangle Phase Angle between Voltage and L Line Current

Address: 4EH								
Type: Read								
Default Value:	0000H							
15	14	13	12	11	10	9	8	
Pangle15	5 Pangle1	4 Pangle13	Pangle12	Pangle11	Pangle10	Pangle9	Pangle8	
7	6	5	4	3	2	1	0	
Pangle7	Pangle	6 Pangle5	Pangle4	Pangle3	Pangle2	Pangle1	Pangle0	
Bit	Bit Name Description							
Pangle[15:0] L line voltage current angle. Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.					e.			

Smean L Line Mean Apparent Power

L Line Mean	Apparent Po	ower							
Address: 4FH Type: Read Default Value:									
15	14	13	12	11	10	9	8		
Smean15	5 Smean1	Smean14 Smean13 Smean12 Smean11 Smean10 Smean9 Smean8							
7	6	5	4	3	2	1	0		
Smean7	Smean	6 Smean5	Smean4	Smean3	Smean2	Smean1	Smean0		
Bit	Name		Description						
15 - 0	Smean[15:0]	L line mean apparent power. Complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. If current is specially handled by MCU, the power of the M90E26 and the actual power have the same multiple relationship as the current.							

Irms2 N Line Current rms

Address: 68H Type: Read Default Value:							
15 14 13 1				11	10	9	8
Irms2_15	i Irms2_1	l4 lrms2_13	Irms2_12	Irms2_11	Irms2_10	Irms2_9	Irms2_8
7	6	5	4	3	2	1	0
Irms2_7	Irms2_	6 Irms2_5	Irms2_4	Irms2_3	Irms2_2	Irms2_1	Irms2_0
Bit	Name			Descri	ption		
15 - 0	Irms2[15:0]	N line current rms. Data format is XX.XXX, which corresponds to 65.535A. For cases when the current exceeds 65.535A, it is suggested to be handled by MCU in application. For example, the register value can be calibrated to 1/2 of the actual value during calibration, then multiplied by 2 in application.					

Pmean2 N Line Mean Active Power

Address: 6AH Type: Read Default Value									
15 14 13 12 11 10 9 8									
Pmean2_15 Pmean2_14 Pmean2_13 Pmean2_12 Pmean2_11 Pmean2_10 Pmean2_9						Pmean2_9	Pmean2_8		
7 6 5 4 3 2					1	0			
Pmean2_	7 Pmean2	_6 Pmean2_5	Pmean2_4	Pmean2_3	Pmean2_2	Pmean2_1	Pmean2_0		
Bit	Name		Description						
15 - 0	Pmean2[15:0]	N line mean active power. Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kW. If current is specially handled by MCU, the power of the M90E26 and the actual power have the same multiple relationship as the current.							

Qmean2 N Line Mean Reactive Power

Address: 6BH Type: Read Default Value:									
15	14	13	12	11	10	9	8		
Qmean2_15 Qmean2_14 Qmean2_13 Qmean2_12				Qmean2_11	Qmean2_10	Qmean2_9	Qmean2_8		
7	6	5	4	3	2	1	0		
Qmean2_	7 Qmean2	2_6 Qmean2_5	Qmean2_4	Qmean2_3	Qmean2_2	Qmean2_1	Qmean2_0		
Bit	Name		Description						
15 - 0	N line mean reactive power. Complement, MSB is the sign bit. Data format is XX.XXX, which corresponds to -32.768~+32.767kvar. If current is specially handled by MCU, the power of M90E26 and the actual power have the same muple relationship as the current.						68~+32.767kvar. ve the same multi-		

PowerF2 N Line Power Factor

Тур	dress: 6D e: Read ault Value		0H								
	15		14		13	12	11	10	9	8	
	PowerF2	_15	PowerF2_	_14	PowerF2_13 PowerF2_12 PowerF2_11 PowerF2_10 PowerF2_9 PowerF2_8						
	7		6		5	4	3	2	1	0	
	PowerF2	2_7	PowerF2	_6	PowerF2_5	PowerF2_4	PowerF2_3	PowerF2_2	PowerF2_1	PowerF2_0	
	Bit	ı	Name	Description							
	N line power factor. PowerF2[15:0] N line power factor. Signed, MSB is the sign bit. Data format is X.XXX. Power factor range: -1.000~+1.000. For example, 03l 8H corresponds to the power factor of 1.000, and 83E8H corresponds to the power factor of -1.000.										

Pangle2 Phase Angle between Voltage and N Line Current

Address: 6EH							
Type: Read							
Default Value:	0000H						
15	14	13	12	11	10	9	8
Pangle2_1	Pangle2_	.14 Pangle2_13	Pangle2_12	Pangle2_11	Pangle2_10	Pangle2_9	Pangle2_8
7	6	5	4	3	2	1	0
Pangle2_	7 Pangle2	_6 Pangle2_5	Pangle2_4	Pangle2_3	Pangle2_2	Pangle2_1	Pangle2_0
Bit							
15 - 0 Pangle2[15:0] N line voltage current angle Signed, MSB is the sign bit. Data format is XXX.X. Angle range: -180.0~+180.0 degree.					e.		

Smean2 N Line Mean Apparent Power

Address: 6FH Type: Read Default Value										
15	14	13	12	11	10	9	8			
Smean2_	15 Smean2_	14 Smean2_13 Smean2_12 Smean2_11 Smean2_10 Smean2_9 Smean2_8								
7	6	5 4 3 2 1 0								
Smean2_	.7 Smean2	_6 Smean2_5	Smean2_4	Smean2_3	Smean2_2	Smean2_1	Smean2_0			
Bit	Name		Description							
15 - 0	Smean2[15:0]	Complement, MSB is	I line mean apparent power complement, MSB is always '0'. Data format is XX.XXX, which corresponds to 0~+32.767kVA. current is specially handled by MCU, the power of M90E26 and the actual power have the same multile relationship as the current.							

6 ELECTRICAL SPECIFICATION

6.1 ELECTRICAL SPECIFICATION

Parameters and Description	Min.	Typical	Max.	Unit	Test Conditions and Comments
		Accı	ıracy		
DC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V \pm 0.3V, 100Hz, I=5A, V=220V, L line shunt resistor 150 $\mu\Omega$, N line CT 1000:1, sampling resistor 4.8 Ω
AC Power Supply Rejection Ratio (PSRR)			±0.1	%	VDD=3.3V superimposes 400mVrms, 100Hz Sinusoidal signal, I=5A, V=220V, L line shunt resistor 150 $\mu\Omega$, N line CT 1000:1, sampling resistor 4.8 Ω
Active Energy Error (Dynamic Range 5000:1)			±0.1	%	L line current gain is '24'; N line current gain is '1'
Measurement Error			±0.5	%	
		Channel Cha	aracteristic	s	
Sampling Frequency		8		kHz	
Harmonic Metering (active and reactive) Bandwidth		1.1		kHz	1% total energy metering error limit; V-harmonic <= 10% of fundamental; I-harmonic<=40% of fundamental
		47.5-62.5		Hz	Active energy metering
Line Frequency		47.5-52.5		Hz	Reactive energy metering
		Analog	Input	ı	
	5μ		25m		PGA gain is '24'
L Line Current Channel Differential Input	7.5µ		37.5m	Vrms	PGA gain is '16'
	15μ		75m		PGA gain is '8'
	30μ		150m		PGA gain is '4'
NII: O A O A O A O A O A O A O A O A O A O	120μ		600m	1/2	PGA gain is '1'
N Line Current Channel Differential Input	120μ		600m	Vrms	DPGA gain is '1'
Voltage Channel Differential Input	120μ	4	600m	Vrms	DPGA gain is '1'
L Line Current Channel Input Impedance		1		kΩ	single-ended impedance
N Line Current Channel Input Impedance		400		kΩ	single-ended impedance
Voltage Channel Input Impedance		400	40	kΩ	single-ended impedance
L Line Current Channel DC Offset N Line Current Channel DC Offset			10	mV	PGA gain is '24'
Voltage Channel DC Offset			10 10	mV mV	
Voltage Charmer DC Offset		Pofor	ence	IIIV	
On-Chip Reference		1.26	ence	V	
Reference Voltage Temperature Coeffi-		1.20		V	
cient		±15	±40	ppm/°C	
		Clo	ock	T	T
Crystal or External Clock		8.192		MHz	The Accuracy of crystal or external clock is $\pm100~{\rm ppm}$
		SPI/UART	Interface		
SPI Interface Bit Rate	200		160k	bps	
UART Interface Baud Rate		2400 or 9600		bps	Baud rate of 2400 and 9600 is automatically detected.
UART Interface Tolerance		±2	-	%	

		Pulse	e Width		
CFx Pulse Width		80		ms	If T \geq 160 ms, width=80ms; if T<160 ms, width = 0.5T. Refer to Section 6.6
		E	SD		
Charged Device Model (CDM)	500			V	JESD22-C101
Human Body Model (HBM)	2000			V	JESD22-A114
Latch Up			±100	mA	JESD78A
Latch Up			4.95	V	JESD78A
		Operating	Conditions		
AVDD, Analog Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
DVDD, Digital Power Supply	2.8	3.3	3.6	V	Metering precision guaranteed within 3.0V~3.6V.
I _{AVDD} , Analog Current		3.4		mA	VDD=3.3V, T=25°C, Vref decoupling capacitor is $1\mu F$.
I _{DVDD} , Digital Current		2.4		mA	VDD=3.3V, T=25°C, Vref decoupling capacitor is $1\mu F$.
		DC Char	acteristics		
Digital Input High Level (pin 1, 4, 24, 25, 27 and 28)	2.0		5.5	V	VDD=3.3V±10%,
Digital Input High Level (pin 9, 12 and 22)	2.0		VDD+0.3	V	VDD=3.3V±10%
Digital Input Low Level			0.8	V	VDD=3.3V±10%
Digital Input Leakage Current			±1	μΑ	VDD=3.6V, VI=VDD or GND
Digital Output Low Level			0.4	V	VDD=3.3V, I _{OL} =10mA
Digital Output High Level	2.4			V	VDD=3.3V, I _{OH} =-10mA
Digital Output Low Level (OSCO)			0.4	V	VDD=3.3V, I _{OL} =1mA
Digital Output High Level (OSCO)	2.4			V	VDD=3.3V, I _{OH} =-1mA

6.2 SPI INTERFACE TIMING

The SPI interface timing is as shown in Figure-10, Figure-11 and Table-11.

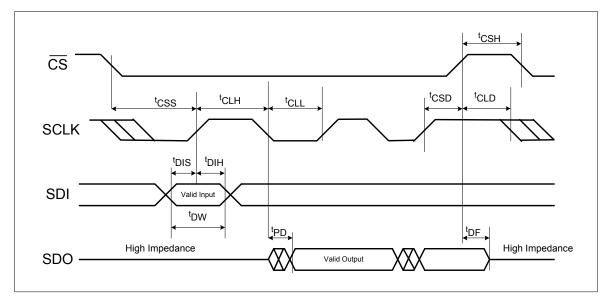


Figure-10 4-Wire SPI Timing Diagram

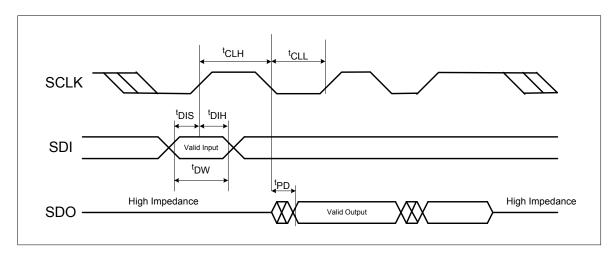


Figure-11 3-Wire SPI Timing Diagram

Table-11 SPI Timing Specification

Symbol	Description	Min.	Typical	Max.	Unit
t _{CSH} note 1	Minimum CS High Level Time	30T ^{note 2} +10			ns
t _{CSS} note 1	CS Setup Time	3T+10			ns
t _{CSD} note 1	CS Hold Time	30T+10			ns
t _{CLD} note 1	Clock Disable Time	1T			ns
t _{CLH}	Clock High Level Time	30T+10			ns
t _{CLL}	Clock Low Level Time	16T+10			ns
t _{DIS}	Data Setup Time	3T+10			ns

Table-11 SPI Timing Specification (Continued)

t _{DIH}	Data Hold Time	22T+10		ns
t _{DW}	Minimum Data Width	30T+10		ns
t _{PD}	Output Delay	14T	15T+20	ns
t _{DF} note 1	Output Disable Time		16T+20	ns

Note:

- 1. Not applicable for three-wire SPI.
- 2. T means SCLK cycle. T=122ns. (Typical value for four-wire SPI)

6.3 POWER ON RESET TIMING

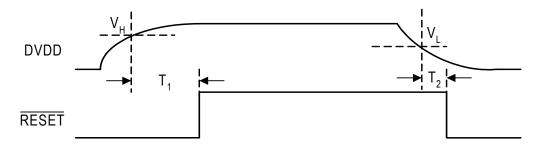


Figure-12 Power On Reset Timing Diagram

Table-12 Power On Reset Specification

Symbol	Description	Min.	Typical	Max.	Unit
V_{H}	Power On Trigger Voltage	2.375	2.5	2.625	V
V_{L}	Power Off Trigger Voltage	2.185	2.3	2.415	V
V_H - V_L	Hysteretic Voltage Difference		0.2		V
T ₁	Delay Time After Power On	5			ms
T ₂	Delay Time After Power Off	10			μs

6.4 ZERO-CROSSING TIMING

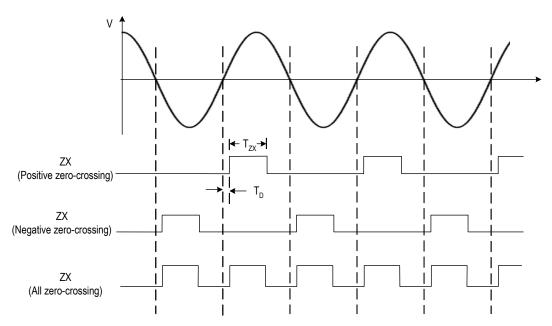


Figure-13 Zero-Crossing Timing Diagram

Table-13 Zero-Crossing Specification

Symbol	Description	Min.	Typical	Max.	Unit
T_{ZX}	High Level Width		5		ms
T_D	Delay Time			0.5	ms

6.5 VOLTAGE SAG TIMING

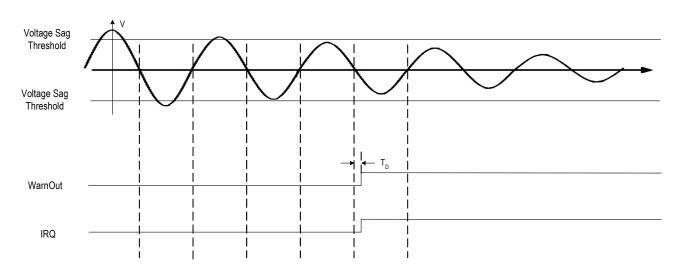


Figure-14 Voltage Sag Timing Diagram

Table-14 Voltage Sag Specification

Symbol	Description	Min.	Typical	Max.	Unit
T _D	Delay Time			0.5	ms

6.6 PULSE OUTPUT

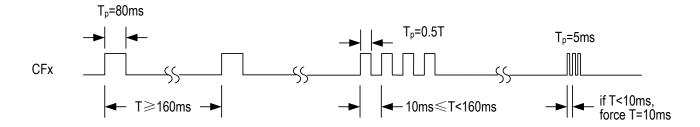
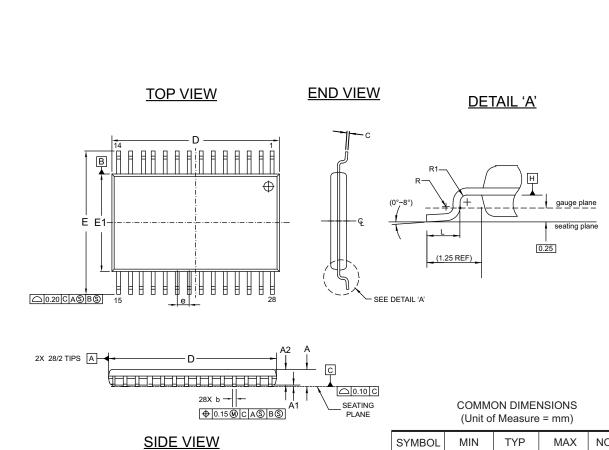


Figure-15 Output Pulse Width

6.7 ABSOLUTE MAXIMUM RATING

Parameter	Maximum Limit
Relative Voltage Between AVDD and AGND	-0.3V~3.7V
Relative Voltage Between DVDD and DGND	-0.3V~3.7V
Analog Input Voltage (I1P, I1N, I2P, I2N, VP, VN)	-1V~VDD
Digital Input Voltage	-0.3V~VDD+2.6V
Operating Temperature Range	-40~85 °C
Maximum Junction Temperature	150 °C

Package Type	Thermal Resistance θ _{JA}	Unit	Condition
Green SSOP28	49	°C/W	No Airflow



ORDERING INFORMATION

Atmel Ordering Code	Package	Carrier	Temperature Range
ATM90E26-YU-R	SSOP28	Tape&Reel	Industry (-40°C to +85°C)
ATM90E26-YU-B	SSOP28	Tube	Industry (-40°C to +85°C)

Packaging Drawings

NOTE:

- 1. Refer to JEDEC drawing MO-150, Variation AH.
- 'D' and 'E1" dimensions do not include mold flash or protrusions, but do include mold mismatch and are measured at datum plane 'H'. Mold flash or protrusion shall not exceed 0.20mm per side.
- Dimension 'b' does not include dambar protrustion/ intrusion. Allowable dambar protrusion shall be 0.13mm total in excess of b dimesnion at maximum material condition. Dambar intrusion shall not reduce dimension b by more than 0.07mm at least material condition.

SYMBOL	MIN	TYP	MAX	NOTE
OTWIDOL	IVIII		1717 (7)	NOIL
Α	1.73	1.86	1.99	
A1	0.05	0.13	0.21	
A2	1.68	1.73	1.78	
b	0.25	-	0.38	3
С	0.13	-	0.20	
D	10.07	10.20	10.33	2
E	7.65	7.80	7.90	
E1	5.20	5.30	5.38	2
е		0.65 BSC		
L	0.55	0.75	0.95	
R	0.09	-	-	
R1	0.09	-	-	

2/25/14

∕Itmel	TITLE	GPC	DRAWING NO.	REV.
Package Drawing Contact: packagedrawings@atmel.com	28Y, 28-lead 5.3 mm Body Width, 0.65mm pitch, 1.25mm lead length, Plastic Shrink Small Outline Package (SSOP)	TBF	28Y	В

REVISION HISTORY

Doc. Rev.	Date	Comments
46002A	4/18/2014	Initial document release.
46002B	11/7/2014	Removed Preliminary.

TUDE

Atmel Corporation 1600

1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2014 Atmel Corporation. All rights reserved. / Rev.: Atmel-46002B-SE-M90E26-Datasheet_110714.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.