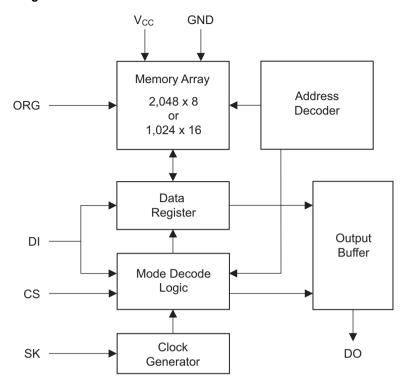

1. Pin Configuration and Pinouts

Table 1-1. Pin Configurations

Pin Name	Function
CS	Chip Select
DC	Don't Connect
DI	Serial Data Input
DO	Serial Data Output
GND	Ground
ORG	Internal Organization
SK	Serial Data Clock
VCC	Power Supply

Note: Drawings are not to scale.


2. Absolute Maximum Ratings*

Operating Temperature –55°C to +125°C
Storage Temperature65°C to +150°C
Voltage on any Pin with Respect to Ground1.0V to +7.0V
Maximum Operating Voltage 6.25V
DC Output Current

*Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3. Block Diagram

Figure 3-1. Block Diagram

Note: When the ORG pin is connected to V_{CC} , the x16 organization is selected. When it is connected to ground, the x8 organization is selected. If the ORG pin is left unconnected and the application does not load the input beyond the capability of the internal $1M\Omega$ pull-up, then the x16 organization is selected.

4. Memory Organization

4.1 Pin Capacitance

Table 4-1. Pin Capacitance⁽¹⁾

Applicable over recommended operating range from T_A = 25°C, f = 1.0 MHz, V_{CC} = +5.0V (unless otherwise noted).

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (DO)	5	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SK, DI)	5	pF	V _{IN} = 0V

Note: 1. This parameter is characterized and is not 100% tested.

4.2 DC Characteristics

Table 4-2. DC Characteristics

Applicable over recommended operating range from: $T_A = -40$ °C to +125°C, $V_{CC} = +2.7$ V to +5.5V (unless otherwise noted).

Symbol	Parameter	Test Condition		Min	Тур	Max	Unit
V _{CC1}	Supply Voltage			2.7		5.5	V
V _{CC2}	Supply Voltage			4.5		5.5	V
	Supply Current	V _{CC} = 5.0V	READ at 1.0MHz		0.5	2.0	mA
I _{CC}	Supply Current	V _{CC} = 5.0V	WRITE at 1.0MHz		0.5	2.0	mA
I _{SB1}	Standby Current	V _{CC} = 2.7V	CS = 0V		6.0	10.0	μA
I _{SB2}	Standby Current	V _{CC} = 5.0V	V _{CC} = 5.0V		10.0	15.0	μA
I _{IL}	Input Leakage	V_{IN} = 0V to V_{CC}		0.1	3.0	μA	
I _{OL}	Output Leakage	V_{IN} = 0V to V_{CC}			0.1	3.0	μA
V _{IL1} ⁽¹⁾	Input Low Voltage	27\/<\/ <55\/	0.777 .77			0.8	V
V _{IH1} ⁽¹⁾	Input High Voltage	$2.7V \le V_{CC} \le 5.5V$		2.0		V _{CC} + 1	V
V _{OL1}	Output Low Voltage	$I_{OL} = 2.1 \text{mA}$				0.4	V
V _{OH1}	Output High Voltage	2.7 V \(\text{VCC} \(\text{CC}\)	I _{OH} = -0.4mA	2.4			V

Note: 1. V_{IL} min and V_{IH} max are reference only and are not tested.

4.3 AC Characteristics

Table 4-3. AC Characteristics

Applicable over recommended operating range from T_A = -40°C to +125°C, V_{CC} = As Specified, CL = 1 TTL Gate and 100pF (unless otherwise noted).

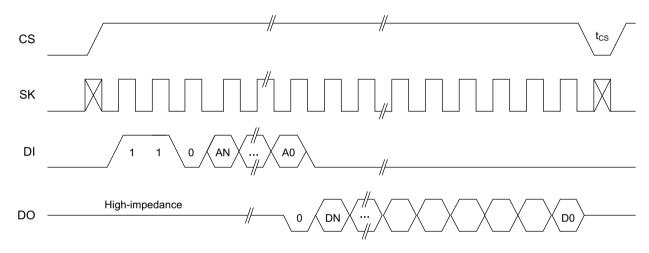
Symbol	Parameter	Test Condition		Min	Тур	Max	Units	
f	SK Clock Frequency	$4.5V \le V_{CC} \le 5.$	5V	0		2	NAL 1-	
f _{SK}	SK Clock Frequency	$2.7V \le V_{CC} \le 5.$	5V	0		1	MHz	
4	CV High Time	$4.5V \le V_{CC} \le 5.$	5V	250				
t _{skH}	SK High Time	$2.7V \le V_{CC} \le 5.$	5V	250			ns	
	CK Law Time	$4.5V \le V_{CC} \le 5.$	5V	250				
t _{skL}	SK Low Time	$2.7V \le V_{CC} \le 5.$	5V	250			ns	
	Minimum CS	$4.5V \le V_{CC} \le 5.$	5V	250				
t _{CS}	Low Time	$2.7V \le V_{CC} \le 5.$	5V	250			ns	
	00 0 d a T	Date Control	$4.5V \le V_{CC} \le 5.5V$	50				
t _{CSS}	CS Setup Time	Relative to SK	$2.7V \le V_{CC} \le 5.5V$	50			ns	
	DI Colon Trans	Date:	$4.5V \le V_{CC} \le 5.5V$	100				
t _{DIS}	DI Setup Time	Relative to SK	$2.7V \le V_{CC} \le 5.5V$	100			ns	
t _{CSH}	CS Hold Time	Relative to SK		0			ns	
Ĺ	Dilled Time	Deletive to OK	$4.5V \le V_{CC} \le 5.5V$	100			ns	
t _{DIH}	DI Hold Time	Relative to SK	$2.7V \le V_{CC} \le 5.5V$	100				
ı	Outrat Dalaceta (4)	A O T4	$4.5V \le V_{CC} \le 5.5V$			250		
t _{PD1}	Output Delay to '1'	AC Test	$2.7V \le V_{CC} \le 5.5V$			500	ns	
1	Output Dalay to '0'	A.C. Took	$4.5V \le V_{CC} \le 5.5V$			250		
t _{PD0}	Output Delay to '0'	AC Test	$2.7V \le V_{CC} \le 5.5V$			500	ns	
ı	00 to 0total	A O T4	$4.5V \le V_{CC} \le 5.5V$			250		
t _{SV}	CS to Status Valid	AC Test	$2.7V \le V_{CC} \le 5.5V$			250	ns	
	CS to DO in	AC Test	$4.5V \le V_{CC} \le 5.5V$			100		
t _{DF}	High-impedance	CS = V _{IL}	$2.7V \le V_{CC} \le 5.5V$			150	ns	
t _{WP}	Write Cycle Time		$2.7V \le V_{CC} \le 5.5V$	0.1	4	10	ms	
Endurance ⁽¹⁾	5.0V, 25°C			1,000,000			Write Cycles	

Note: 1. This parameter is characterized and is not 100% tested.

5. Instruction Set for the AT93C86A

Table 5-1. Instruction Set for the AT93C86A

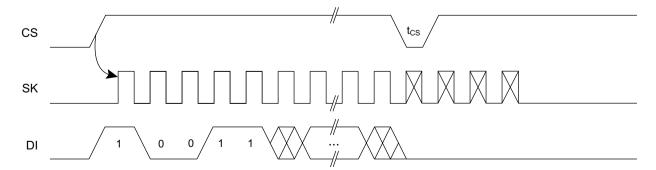
			Addr	ess	Data		
Instruction	SB	Opcode	х8	x16	x8	x16	Comments
READ	1	10	A ₁₀ – A ₀	$A_9 - A_0$			Reads data stored in memory, at specified address.
EWEN	1	00	11XXXXXXXXX	11XXXXXXXX			Write enable must precede all programming modes.
ERASE	1	11	A ₁₀ – A ₀	$A_9 - A_0$			Erases memory location $A_n - A_0$.
WRITE	1	01	A ₁₀ – A ₀	A ₉ – A ₀	$D_7 - D_0$	D ₁₅ – D ₀	Writes memory location $A_n - A_0$.
ERAL	1	00	10XXXXXXXXX	10XXXXXXXX			Erases all memory locations. Valid only at V_{CC} = 4.5V to 5.5V.
WRAL	1	00	01XXXXXXXXX	01XXXXXXXX	$D_7 - D_0$	D ₁₅ – D ₀	Writes all memory locations. Valid when V_{CC} = 4.5V to 5.5V and Disable Register cleared.
EWDS	1	00	00XXXXXXXX	00XXXXXXX			Disables all programming instructions.


6. Functional Description

The AT93C86A is accessed via a simple and versatile 3-wire serial communication interface. The device operation is controlled by seven instructions issued by the host processor. *A valid instruction starts with a rising edge of CS* and consists of a Start Bit (Logic 1) followed by the appropriate Opcode and the desired memory address location.

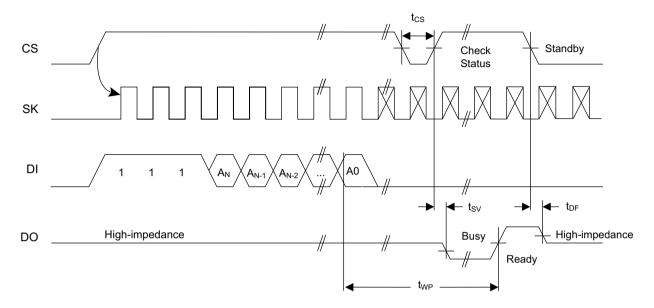
READ: The READ instruction contains the address code for the memory location to be read. After the instruction and address are decoded, data from the selected memory location is available at the Serial Output (DO) pin. Output data changes are synchronized with the rising edges of Serial Clock (SK). The AT93C86A supports sequential Read operations. The device will automatically increment the internal address pointer and clock out the next memory location as long as CS is held high. In this case, the dummy bit (Logic 0) will not be clocked out between memory locations, thus allowing for a continuous stream of data to be read.

Note: A dummy bit (Logic 0) precedes the 8- or 16-bit data output string.


Figure 6-1. READ Timing

ERASE/WRITE (EWEN): To assure data integrity, the part automatically goes into the Erase/Write Disable (EWDS) state when power is first applied. An EWEN instruction must be executed first before any programming instructions can be carried out.

Note: Once in the EWEN state, programming remains enabled until an EWDS instruction is executed or V_{CC} power is removed from the part.


Figure 6-2. EWEN Timing

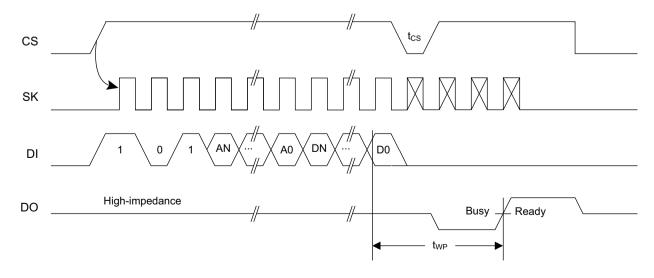
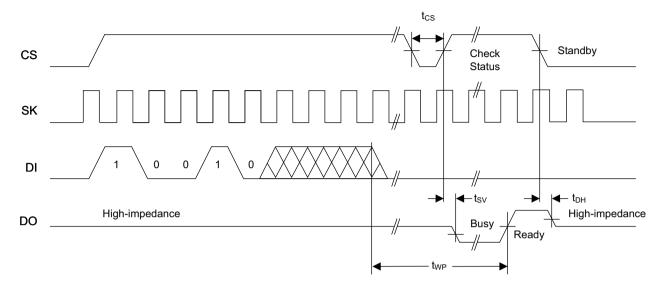
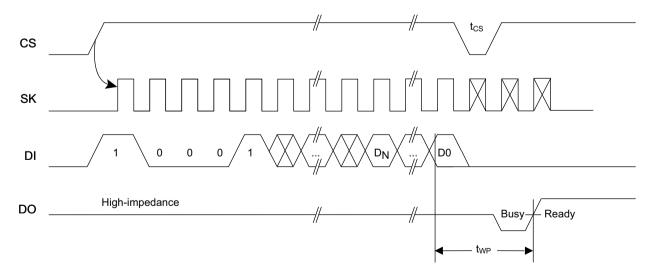

ERASE: The ERASE instruction programs all bits in the specified memory location to the Logic 1 state. The self-timed erase cycle starts once the ERASE instruction and address are decoded. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). A Logic 1 at DO pin indicates the selected memory location has been erased, and the part is ready for another instruction.

Figure 6-3. ERASE Timing

WRITE: The WRITE instruction contains the 8 or 16 bits of data to be written into the specified memory location. The self-timed programming cycle t_{WP} starts after the last bit of data is received at Serial Data Input (DI) pin. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). A Logic 0 at DO indicates that the programming is still in progress. A Logic 1 indicates that the memory location at the specified address has been written with the data pattern contained in the instruction and the part is ready for further instructions. A Ready/Busy status cannot be obtained if the CS is brought high after the end of the self-timed programming cycle t_{WP} .


Figure 6-4. WRITE Timing

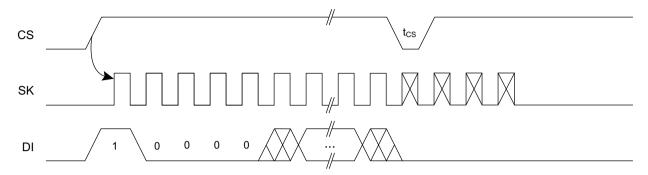
ERASE ALL (ERAL): The ERAL instruction programs every bit in the memory array to the Logic 1 state and is primarily used for testing purposes. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). The ERAL instruction is valid only at V_{CC} = 5.0V \pm 10%.


Figure 6-5. ERAL Timing⁽¹⁾

Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.

WRITE ALL (WRAL): The WRAL instruction programs all memory locations with the data patterns specified in the instruction. The DO pin outputs the Ready/Busy status of the part if CS is brought high after being kept low for a minimum of 250ns (t_{CS}). The WRAL instruction is valid only at $V_{CC} = 5.0V \pm 10\%$.

Figure 6-6. WRAL Timing⁽¹⁾



Note: 1. Valid only at $V_{CC} = 4.5V$ to 5.5V.

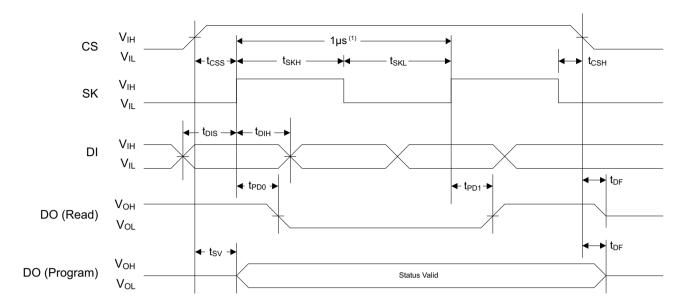

ERASE/WRITE DISABLE (EWDS): To protect against accidental data disturbance, the EWDS instruction disables all programming modes and should be executed after all programming operations. The operation of the READ instruction is independent of both the EWEN and EWDS instructions and can be executed at any time.

Figure 6-7. EWDS Timing

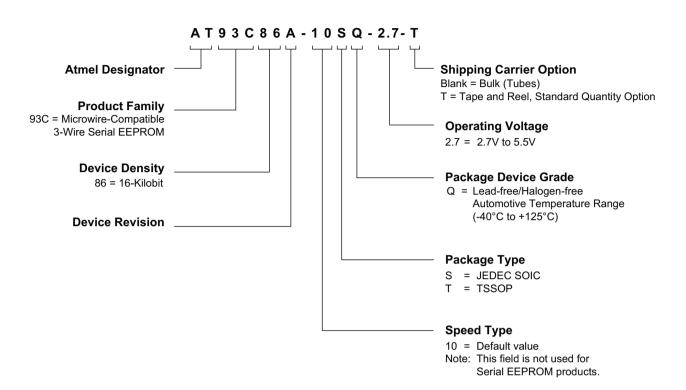
7. Timing Diagrams

Figure 7-1. Synchronous Data Timing

Note: 1. This is the minimum SK period.

Table 7-1. Organization Key for Timing Diagrams

	AT93C86A (16K)				
I/O	x8	x16			
A _N	A ₁₀	A ₉			
D _N	D ₇	D ₁₅			

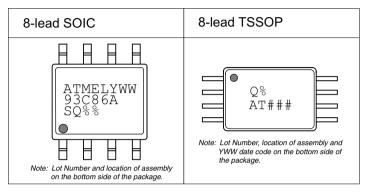

7.1 Power Recommendation

The device internal POR (Power-On Reset) threshold is just below the minimum device operating voltage. Power shall rise monotonically from 0.0Vdc to full V_{CC} in less than 1ms. Hold at full V_{CC} for at least 100 μ s before the first operation. Power shall drop from full V_{CC} to 0.0Vdc in less than 1ms. Power dropping to a non-zero level and then slowly going to zero is *not* recommended. Power shall remain off (0.0Vdc) for 0.5s minimum. Please consult Atmel if your power conditions do not meet the above recommendations.

8. Ordering Information

8.1 Ordering Code Detail

8.2 Atmel Ordering Code Information


	Lead			Delivery Information		Operation
Atmel Ordering Code	Finish	Package	Voltage	Form	Quantity	Range
AT93C86A-10SQ-2.7-T	Lead-free Halogen-free	8S1	2.7V to 5.5V	Tape and Reel	4,000 per Reel	Automotive Temperature
AT93C86A-10TQ-2.7		8X	2.7 V 10 3.3 V	Bulk (Tubes)	100 per Tube	(-40°C to 125°C)

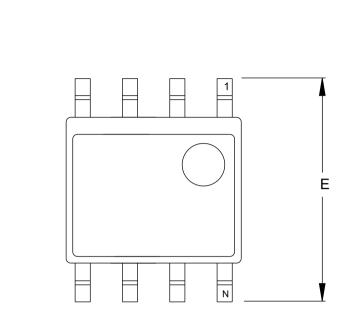
Package Type					
8S1	8-lead, 0.150" wide body, Plastic Gull Wing Small Outline (JEDEC SOIC)				
8X	8-lead, 4.4mm body, Plastic Thin Shrink Small Outline Package (TSSOP)				

9. Part Markings

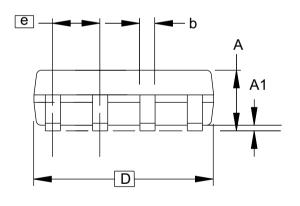
AT93C86A: Automotive Package Marking Information

Note 1: ● designates pin 1 Note 2: Package drawings are not to scale

Catalog Number Truncation							
AT93C86A Truncation Code ###: 86A							
Date Code	es				Voltages		
Y = Year 4: 2014 5: 2015 6: 2016 7: 2017	8: 2018 9: 2019 0: 2020 1: 2021	M = Month A: January B: Februar L: Decemb	y	WW = Work Week of Assembly 02: Week 2 04: Week 4 52: Week 52	% = Minimum Voltage 3 or 27: 2.7V min		
	f Assembly	L. Decemb	Lot Nu		Grade/Lead Finish Material		
@ = Country of Assembly		AAAA = Atmel Wafer Lot Number		Q: Automotive /Matte Tin/SnAgCu			
Trace Cod	е				Atmel Truncation		
XX = Trace Code (Atmel Lot Numbers Correspond to Example: AA, AB YZ, ZZ			orrespon	d to Code)	AT: Atmel ATM: Atmel ATML: Atmel		

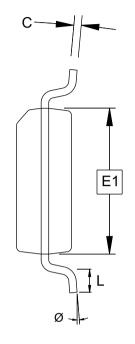

3/13/14

Atmel	TITLE	DRAWING NO.	REV.	l
Package Mark Contact: DL-CSO-Assy_eng@atmel.com	93C86AAM, AT93C86A Automotive Package Marking Information	93C86AAM	А	



10. **Packaging Information**

10.1 8S1 — 8-lead JEDEC SOIC



TOP VIEW

SIDE VIEW

Notes: This drawing is for general information only. Refer to JEDEC Drawing MS-012, Variation AA for proper dimensions, tolerances, datums, etc.

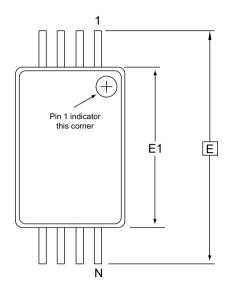
END VIEW

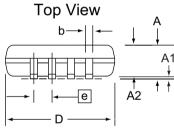
COMMON DIMENSIONS (Unit of Measure = mm)

SYMBOL	MIN	NOM	MAX	NOTE			
Α	_	_	1.75				
A1	0.10	_	0.25				
b	0.31	_	0.51				
С	0.17	_	0.25				
D		4.90 BSC					
Е	(6.00 BSC					
E1	;	3.90 BSC					
е							
L	0.40	_	1.27				
Ø	0°	_	8°				

3/6/2015

Atmel

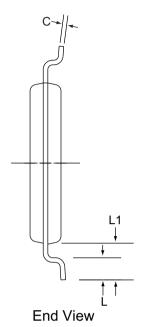

Package Drawing Contact: packagedrawings@atmel.com TITLE


8S1, 8-lead (0.150" Wide Body), Plastic Gull Wing Small Outline (JEDEC SOIC)

GPC SWB

DRAWING NO. REV. 8S1 Н

10.2 8X — 8-lead TSSOP



Side View

Notes:

- This drawing is for general information only. Refer to JEDEC Drawing MO-153, Variation AA, for proper dimensions, tolerances, datums, etc.
- Dimension D does not include mold Flash, protrusions or gate burrs. Mold Flash, protrusions and gate burrs shall not exceed 0.15mm (0.006in) per side.
- Dimension E1 does not include inter-lead Flash or protrusions. Inter-lead Flash and protrusions shall not exceed 0.25mm (0.010in) per side.
- 4. Dimension b does not include Dambar protrusion. Allowable Dambar protrusion shall be 0.08mm total in excess of the b dimension at maximum material condition. Dambar cannot be located on the lower radius of the foot. Minimum space between protrusion and adjacent lead is 0.07mm.
- 5. Dimension D and E1 to be determined at Datum Plane H.

COMMON DIMENSIONS (Unit of Measure = mm)

	(0		,	
SYMBOL	MIN	NOM	MAX	NOTE
Α	-	-	1.20	
A1	0.05	-	0.15	
A2	0.80	1.00	1.05	
D	2.90	3.00	3.10	2, 5
Е	6.40 BSC			
E1	4.30	4.40	4.50	3, 5
b	0.19	0.25	0.30	4
е	0.65 BSC			
L	0.45	0.60	0.75	
L1	1.00 REF			
С	0.09	-	0.20	

2/27/14

Atmel

Package Drawing Contact: packagedrawings@atmel.com

T	LE				
,	_	11	4	4	DI

8X, 8-lead 4.4mm Body, Plastic Thin Shrink Small Outline Package (TSSOP)

GPC	DRAWING NO.	REV.
TNR	8X	Е

11. Revision History

Doc. Rev.	Date	Comments
5096H	01/2017	Added Bulk (Tube) Shipping Carrier Option Changed Standard Quantity Tape and Reel Option to "T" Updated Atmel Ordering Code Information Table
5096G	02/2016	Updated 8S1 package drawing and ordering information layout. Added the section, "Power Recommendation".
5096F	10/2014	Updated packages 8S1 and 8A2 to 8X, template, Atmel logos, and disclaimer page. No change in functional specification.
5096E	01/2008	Moved to new template. Replaced Table 5 with correct version.
5096D	02/2007	Removed PDIP package offering. Removed Pb'd part numbers.
5096C	09/2006	Revision history implemented; Removed 'Preliminary' status from datasheet.

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USAT: (+1)(408) 441.0311F: (+1)(408) 436.4200|www.atmel.com

© 2017 Atmel Corporation. / Rev.: Atmel-5096H-SEEPROM-AT93C86A-Automotive-Datasheet_012017.

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.