

Ordering Information

Part Number	Ambient Temperature Range	Package	Environmental	
AOZ8222DI-05	-40 °C to +85 °C	DFN 1.0 x 0.6-3L	Green Product	

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/media/AOSGreenPolicy.pdf for additional information.

Absolute Maximum Ratings

Exceeding the Absolute Maximum ratings may damage the device.

Parameter	AOZ8222DI-05		
Peak Pulse Current, t _P = 8/20 μs	5.5 A		
Peak Pulse Power, t _P = 8/20 μs	50 W		
Storage Temperature (T _S)	-65 °C to +150 °C		
ESD Rating per IEC61000-4-2, Contact ⁽¹⁾	± 20 kV		
ESD Rating per IEC61000-4-2, Air ⁽¹⁾	± 20 kV		
ESD Rating per Human Body Model ⁽²⁾	± 30 kV		

Notes:

1. IEC 61000-4-2 discharge with C_{Discharge} = 150 pF, R_{Discharge} = 330 Ω . 2. Human Body Discharge per MIL-STD-883, Method 3015 C_{Discharge} = 100 pF, R_{Discharge} = 1.5 k Ω .

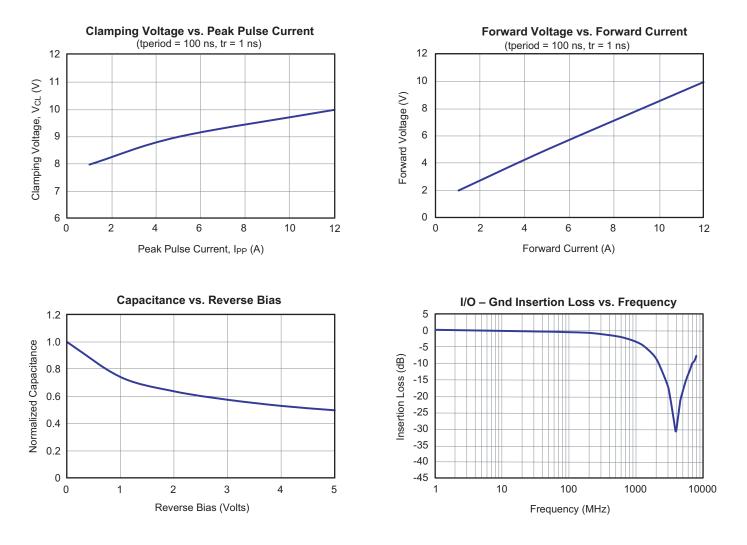
Maximum Operating Ratings

Parameter	Rating
Junction Temperature (T _J)	-40 °C to +125 °C

Electrical Characteristics

 $T_A = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{RWM}	Reverse Working Voltage	Between I/O and VN ⁽³⁾			5.0	V
V _{BR}	Reverse Breakdown Voltage	I_T = 1 mA, between I/O and VN ⁽⁴⁾	6.0			V
I _R	Reverse Leakage Current	V _{RWM} = 5 V, between I/O and VN			1	μA
V _F	Diode Forward Voltage	I _F = 10 mA	0.6	0.7	0.9	V
V _{CL}	Channel Clamp Voltage Positive Transients Negative Transients	I _{PP} = 1 A, tp = 100 ns, any I/O pin to Ground ⁽⁵⁾⁽⁶⁾			8.0 -2.0	V V
	Channel Clamp Voltage Positive Transients Negative Transients	$I_{PP} = 5 \text{ A}$, tp = 100 ns, any I/O pin to Ground ⁽⁵⁾⁽⁶⁾			9.0 -5.0	V V
	Channel Clamp Voltage Positive Transients Negative Transients	I_{PP} = 12 A, tp = 100 ns, any I/O pin to Ground ⁽⁵⁾⁽⁶⁾			10.0 -10.0	V V
CJ	Channel Input Capacitance	V_R = 0 V, f = 1 MHz, between I/O pins ⁽⁶⁾		8	9	pF
		V _R = 0 V, f = 1 MHz, any I/O pin to Ground ⁽⁶⁾		15	18	pF


Notes:

3. The working peak reverse voltage, VRWM, should be equal to or greater than the DC or continuous peak operating voltage level.

- 4. V_{BR} is measured at the pulse test current $I_{\text{T}}.$
- 5. Measurements performed using a 100ns Transmission Line Pulse (TLP) system.
- 6. Guaranteed by design and characterization.

Typical Performance Characteristics

LEGAL DISCLAIMER

Applications or uses as critical components in life support devices or systems are not authorized. AOS does not assume any liability arising out of such applications or uses of its products. AOS reserves the right to make changes to product specifications without notice. It is the responsibility of the customer to evaluate suitability of the product for their intended application. Customer shall comply with applicable legal requirements, including all applicable export control rules, regulations and limitations.

AOS' products are provided subject to AOS' terms and conditions of sale which are set forth at: http://www.aosmd.com/terms_and_conditions_of_sale

LIFE SUPPORT POLICY

ALPHA AND OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.aosmd.com