ADMV1011* PRODUCT PAGE QUICK LINKS

Last Content Update: 11/01/2017

View a parametric search of comparable parts.

EVALUATION KITS

ADMV1011 Evaluation Board

DOCUMENTATION

Data Sheet

• ADMV1011: 17 GHz to 24 GHz, GaAs, MMIC, I/Q Upconverter Data Sheet

DESIGN RESOURCES

- ADMV1011 Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADMV1011 EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.

TABLE OF CONTENTS

Features 1
Applications1
Functional Block Diagram1
General Description1
Revision History
Specifications
Lower Sideband Performance
Upper Sideband Performance4
Absolute Maximum Ratings5
ESD Caution
Pin Configuration and Function Descriptions
Typical Performance Characteristics7
Lower Sideband7
Upper Sideband9
Performance vs. Gain Regulation11

Performance vs. LO Power	
Leakage and Return Loss Performance	
Spurious Performance	
M × N Spurious Performance	
Theory of Operation	
LO Driver Amplifier	
Mixer	
RF Amplifier	
Applications Information	
Typical Application Circuit	
Evaluation Board Information	
Bill of Materials	
Outline Dimensions	
Ordering Guide	
RF Amplifier Applications Information Typical Application Circuit Evaluation Board Information Bill of Materials Outline Dimensions	20 21 21 22 22 24 24 25

REVISION HISTORY

10/2017—Revision 0: Initial Version

SPECIFICATIONS

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $-4 \text{ dBm} \le \text{LO} \le +4 \text{ dBm}$, $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$, taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = -5 V, unless otherwise noted.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
RF OUTPUT FREQUENCY			17		24	GHz
INPUT FREQUENCY						
Local Oscillator	LO	With 2× multiplier	8		12	GHz
Intermediate Frequency	IF		2		4	GHz
LO AMPLITUDE			-4	0	+4	dBm
POWER INTERFACE						
Amplifier Bias Voltage						
LO	VDLO			3.5		V
RF	VDRF1, VDRF2			5		V
Amplifier Bias Current						
LO	IDLO			160	180	mA
RF	IDRF1	Adjust VGRF1 between –1.8 V to –0.8 V to get IDRF1		220	300	mA
	IDRF2	Adjust VGRF2 between –1.8 V to –0.8 V to get IDRF1		75		mA
RF Amplifier Gate Control Voltage	VGRF1, VGRF2		-1.8		-0.8	V
RF Amplifier Gain Control Voltage	VCTL2, VCTL3	Maximum gain = -5 V, minimum gain = 0 V	-5		0	V

LOWER SIDEBAND PERFORMANCE

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $-4 \text{ dBm} \le \text{LO} \le +4 \text{ dBm}$, $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$, taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = -5 V, unless otherwise noted.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Мах	Unit
RF PERFORMANCE						
Frequency						
Radio Frequency	RF		17		20	GHz
Local Oscillator	LO		8.5		12	GHz
Intermediate Frequency	IF		2		4	GHz
Conversion Gain			14	21	26.5	dB
Dynamic Range	VVA	VVA control slope > 35 mV/dB	30			
SSB Noise Figure	SSB NF	With hybrid at maximum gain			16	dB
		With hybrid at 31dB gain regulation vs. gain regulation, gain control \leq 25 dB			22	dB
Output Third-Order Intercept	IP3	At output power (P_{OUT}) = 8 dBm vs. gain regulation	31	33		dBm
Output 1 dB Compression Point	P1dB		22			dBm
Image Rejection		Gain regulation change from 0 dB to 31 dB	20			dB
Leakage						
2× LO to RF		Maximum conversion gain at 18 GHz			5	dBm
		Maximum conversion gain at 23 GHz			5	dBm
		Vs. gain regulation			1	dB/dł
2× LO to IF					-25	dBm
Return Loss						
RF Output					10	dB
LO Input		LO = 0 dBm			10	dB
IF Input					10	dB

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
IF Input Power			-25		0	dBm
$3 \times LO - 4 \times IF$ Spur		RF frequency (f_{RF}) = 18 GHz, IF = 0 dBm		70		dBc
$1 \times LO + 2 \times IF$ Spur		$f_{RF} = 18 \text{ GHz}, \text{ IF} = 0 \text{ dBm}$		55		dBc
6× IF Spur		$f_{RF} = 18 \text{ GHz}, \text{ IF} = 0 \text{ dBm}$		75		dBc

UPPER SIDEBAND PERFORMANCE

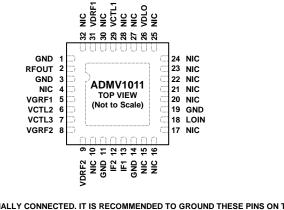
Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $-4 \text{ dBm} \le \text{LO} \le +4 \text{ dBm}$, $-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +85^{\circ}\text{C}$, taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = -5 V, unless otherwise noted.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
RF PERFORMANCE						
Frequency						
Radio Frequency	RF		20		24	GHz
Local Oscillator	LO		8		11	GHz
Intermediate Frequency	IF		2		4	GHz
Conversion Gain			14	21	26.5	dB
Dynamic Range	VVA	VVA control slope > 35 mV/dB	30			
SSB Noise Figure	NF	With hybrid at maximum gain			16	dB
		With hybrid at 31 dB gain regulation vs. gain regulation, gain control \leq 25 dB			22	dB
Output Third-Order Intercept	IP3	At output power (P_{OUT}) = 8 dBm vs. gain regulation	31	33		dBm
Output 1 dB Compression Point	P1dB		22			dBm
Image Rejection		Gain regulation change from 0 dB to 31dB	20			dB
Leakage						
2× LO to RF		Maximum conversion gain at 18 GHz			5	dBm
		Maximum conversion gain at 23 GHz			5	dBm
		Vs. gain regulation			1	dB/d
2× LO to IF					-25	dBm
Return Loss						
RF Output					10	dB
LO Input		LO = 0 dBm			10	dB
IF Input					10	dB
IF Input Power			-25		0	dBm
$4 \times LO - 5 \times IF$ Spur		RF frequency (f_{RF}) = 23 GHz, IF = 0 dBm		70		dBc
$4 \times LO - 4 \times IF$ Spur		$f_{RF} = 23 \text{ GHz}, \text{ IF} = 0 \text{ dBm}$		70		dBc
$3 \times LO - 2 \times IF$ Spur		$f_{RF} = 23 \text{ GHz}, \text{IF} = 0 \text{ dBm}$		60		dBc
$1 \times LO + 4 \times IF$ Spur		$f_{RF} = 23 \text{ GHz}, \text{ IF} = 0 \text{ dBm}$		65		dBc
7× IF Spur		$f_{RF} = 23 \text{ GHz}, \text{ IF} = 0 \text{ dBm}$		75		dBc

ABSOLUTE MAXIMUM RATINGS

Table 4.

Tuble II	
Parameter	Rating
Supply Voltage	
VDRF1, VDRF2	5.5 V
VDLO	5.5 V
VGRF1, VGRF2	–2.5 V to 0 V
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	–55°C to +125°C
Input Power	
LO	15 dBm
IF	15 dBm
Lead Temperature Range (Soldering 60 sec)	–65°C to +150°C
Electrostatic Discharge (ESD) Sensitivity	
Field Induced Charge Device Model (FICDM)	500 V
Human Body Model (HBM)	250 V


Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES 1. NIC = NOT INTERNALLY CONNECTED. IT IS RECOMMENDED TO GROUND THESE PINS ON THE PCB. 2. EXPOSED PAD. GOOD RF AND THERMAL GROUNDING IS RECOMMENDED ON THE PCB.

Figure 2. Pin Configuration

Pin No.	Mnemonic	Description
1, 3, 11, 14, 19	GND	Ground. These pins are grounded internally and must be grounded on the printed circuit board (PCB).
2	RFOUT	RF Output. This pin is ac-coupled internally and matched to 50 Ω single ended.
4, 10, 15 to 17, 20 to 25, 27, 28, 30, 32	NIC	Not Internally Connected. It is recommended to ground these pins on the PCB.
5, 8	VGRF1, VGRF2	Power Supply Voltage for the Gate of the RF Amplifier. Refer to the Applications Information section for the required external components and biasing.
6, 7, 29	VCTL2, VCLT3, VCTL1	Gain Control Voltage. Refer to the Applications Information section for biasing.
9, 31	VDRF2, VDRF1	Power Supply Voltage for the RF Amplifier. Refer to the Applications Information section for the required external components and biasing.
12, 13	IF2, IF1	Quadrature IF Inputs. These pins are matched to 50 Ω single ended and are dc-coupled. No external dc blocks required.
18	LOIN	Local Oscillator. This pin is ac-coupled and matched to 50 Ω single ended.
26	VDLO	Power Supply Voltage for the LO Amplifier. Refer to the external Applications Information section for the required external components and biasing.
	EPAD	Exposed Pad. Good RF and thermal grounding is recommended on the PCB.

TYPICAL PERFORMANCE CHARACTERISTICS

LOWER SIDEBAND

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $T_A = 25^{\circ}$ C, LO = 0 dBm, IF frequency = 3 GHz, IFx pin= -10 dBm, and taken with Mini-Circuits QCN-45+ power splitter/combiner as lower sideband, unless otherwise noted. VCTL2 and VCTL3 = -5 V, unless otherwise noted.

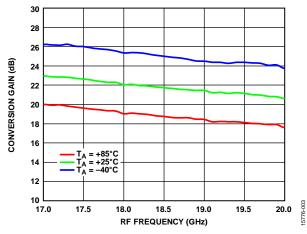


Figure 3. Conversion Gain vs. RF Frequency at Various Temperatures

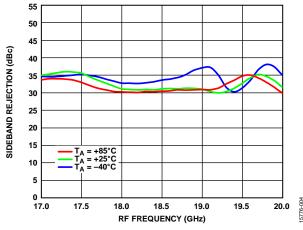
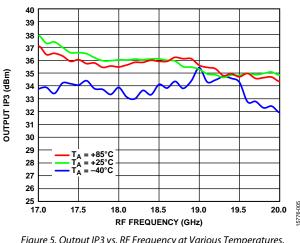
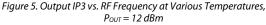




Figure 4. Sideband Rejection vs. RF Frequency at Various Temperatures

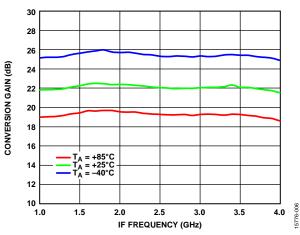


Figure 6. Conversion Gain vs. IF Frequency at Various Temperatures, RF Frequency = 18 GHz

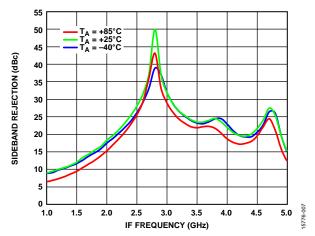


Figure 7. Sideband Rejection vs. IF Frequency, RF Frequency = 18 GHz

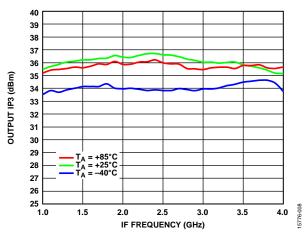


Figure 8. Output IP3 vs. IF Frequency at Various Temperatures, RF Frequency = 18 GHz

Rev. 0 | Page 7 of 25

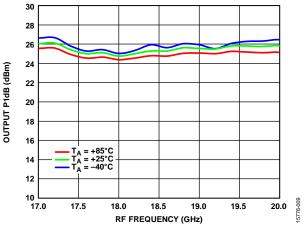


Figure 9. Output P1dB vs. RF Frequency at Various Temperatures

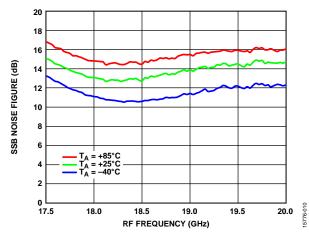


Figure 10. SSB Noise Figure vs. RF Frequency at Various Temperatures

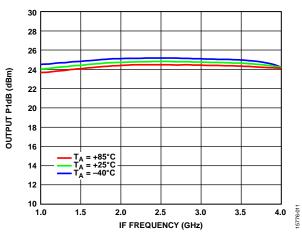


Figure 11. Output P1dB vs. IF Frequency at Various Temperatures, RF Frequency = 18 GHz

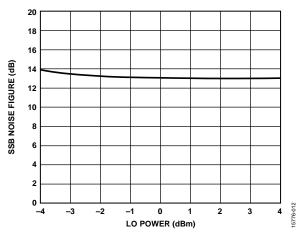


Figure 12. SSB Noise Figure vs. LO Power, RF Frequency = 18 GHz

UPPER SIDEBAND

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, TA = 25° C, LO = 0 dBm, IF frequency = 3 GHz, IFx pin = -10 dBm, and taken with Mini-Circuits QCN-45+ power splitter/combiner as upper sideband, unless otherwise noted. VCTL2 and VCTL3 = -5 V, unless otherwise noted.

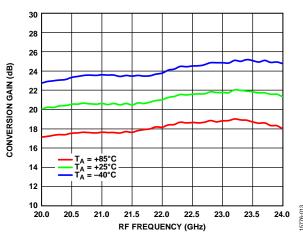


Figure 13. Conversion Gain vs. RF Frequency at Various Temperatures

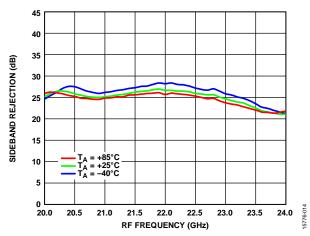


Figure 14. Sideband Rejection vs. RF Frequency at Various Temperatures

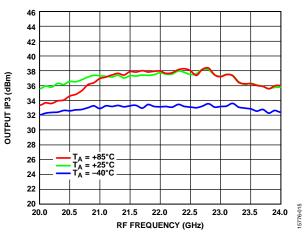


Figure 15. Output IP3 vs. RF Frequency at Various Temperatures, IF Frequencies at $P_{OUT} = 12 \, dBm$

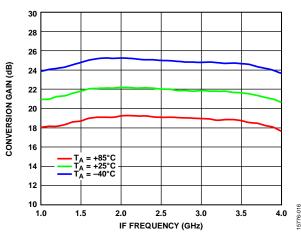


Figure 16. Conversion Gain vs. IF Frequency at Various Temperatures, RF Frequency = 23 GHz

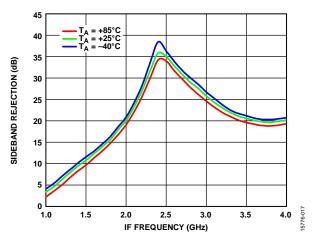


Figure 17. Sideband Rejection vs. IF Frequency at Various Temperatures, RF Frequency = 23 GHz

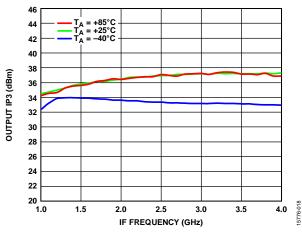


Figure 18. Output IP3 vs. IF Frequency at Various Temperatures, RF Frequency = 23 GHz

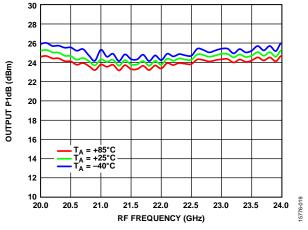


Figure 19. Output P1dB vs. RF Frequency at Various Temperatures

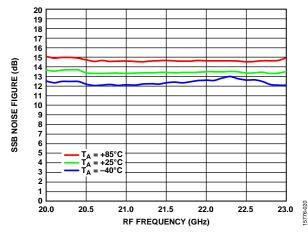


Figure 20. SSB Noise Figure vs. RF Frequency at Various Temperatures

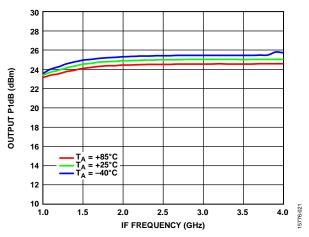


Figure 21. Output P1dB vs. IF Frequency at Various Temperatures, RF Frequency = 23 GHz

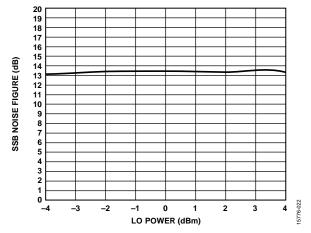
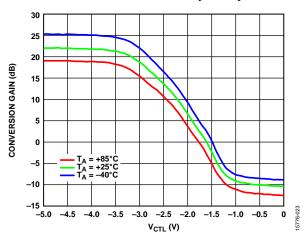
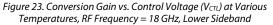




Figure 22. SSB Noise Figure vs. LO Power, RF Frequency = 23 GHz

PERFORMANCE vs. GAIN REGULATION

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $T_A = 25^{\circ}$ C, LO = 0 dBm, IF frequency = 3 GHz, and taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. V_{CTL} is varied for gain regulation.

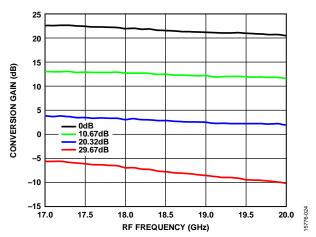


Figure 24. Conversion Gain vs. RF Frequency at Various Attenuation Levels, Lower Sideband

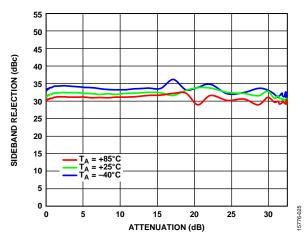


Figure 25. Sideband Rejection vs. Attenuation at Various Temperatures, RF Frequency = 18 GHz, Lower Sideband

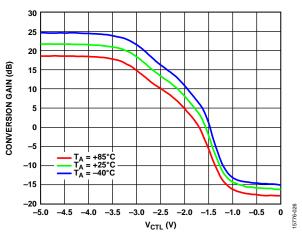


Figure 26. Conversion Gain vs. V_{CTL} at Various Temperatures, RF Frequency = 23 GHz, Upper Sideband

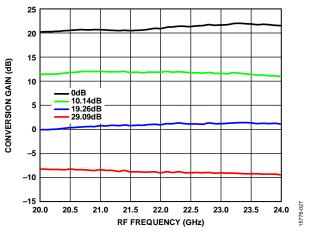


Figure 27. Conversion Gain vs. RF Frequency at Various Attenuation Levels, Upper Sideband

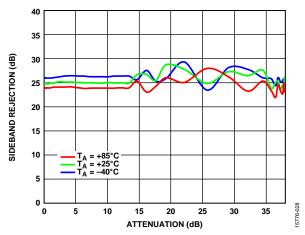


Figure 28. Sideband Rejection vs. Attenuation at Various Temperatures, RF Frequency = 23 GHz, Upper Sideband

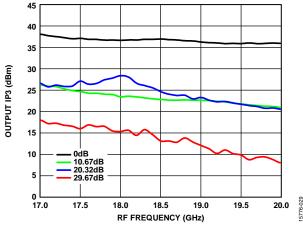


Figure 29. Output IP3 vs. RF Frequency at Various Attenuation Levels, Lower Sideband

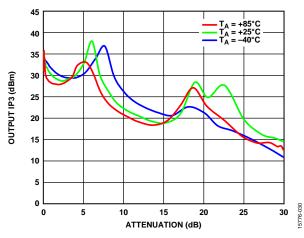


Figure 30. Output IP3 vs. Attenuation at Various Temperatures, RF Frequency = 18 GHz, Lower Sideband

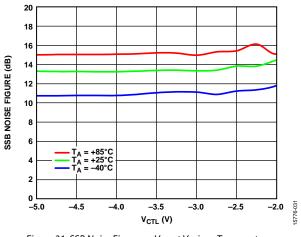


Figure 31. SSB Noise Figure vs. V_{CTL} at Various Temperatures, RF Frequency = 18 GHz, Lower Sideband

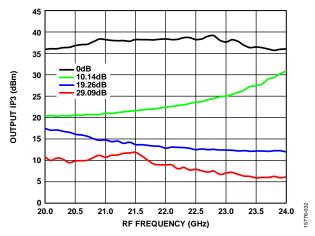


Figure 32. Output IP3 vs. RF Frequency at Various Attenuation Levels, Upper Sideband

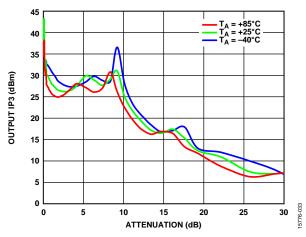


Figure 33. Output IP3 vs. Attenuation at Various Temperatures, RF Frequency = 23 GHz, Upper Sideband

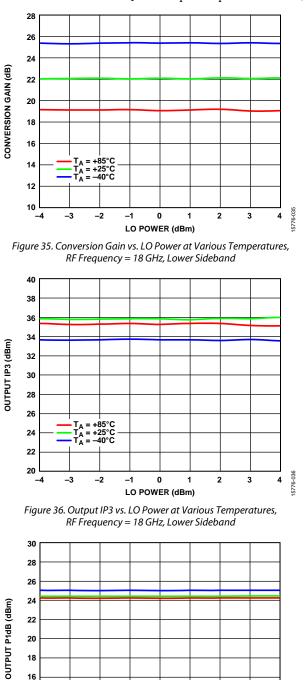



Figure 34. SSB Noise Figure vs. V_{CTL} at Various Temperatures, RF Frequency = 23 GHz, Upper Sideband

PERFORMANCE vs. LO POWER

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, T_A = 25°C, IF frequency = 3 GHz, and taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2 and VCTL3 = -5 V, unless otherwise noted.

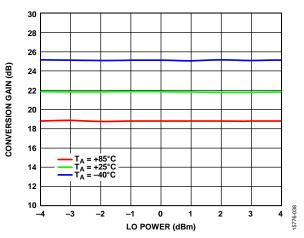


Figure 38. Conversion Gain vs. LO Power at Various Temperatures, RF Frequency = 23 GHz, Upper Sideband

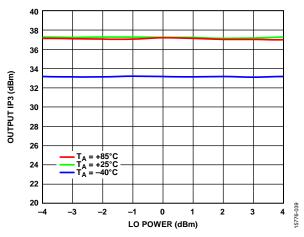


Figure 39. Output IP3 vs. LO Power at Various Temperatures, RF Frequency = 23 GHz, Upper Sideband

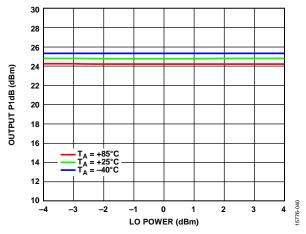


Figure 40. Output P1dB vs. LO Power at Various Temperatures, RF Frequency = 23 GHz, Upper Sideband

5776-037

4

16

14

12

10

_4

-3

T_A = +85°C T_A = +25°C T_A = -40°C

-2

-1

0

LO POWER (dBm) Figure 37. Output P1dB vs. LO Power at Various Temperatures,

RF Frequency = 18 GHz, Lower Sideband

1

2

3

LEAKAGE AND RETURN LOSS PERFORMANCE

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $T_A = 25^{\circ}$ C, LO = 0 dBm, and taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2 and VCTL3 = -5 V unless otherwise noted.

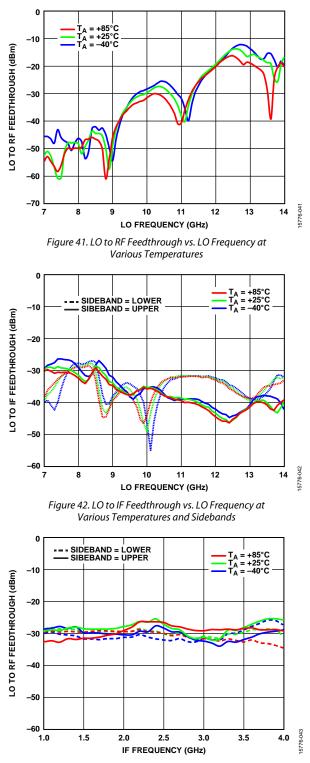
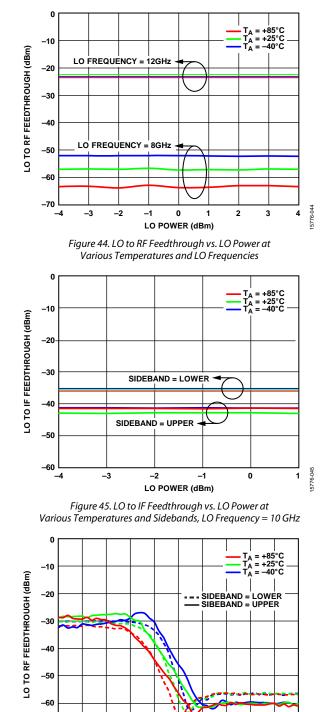
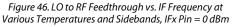
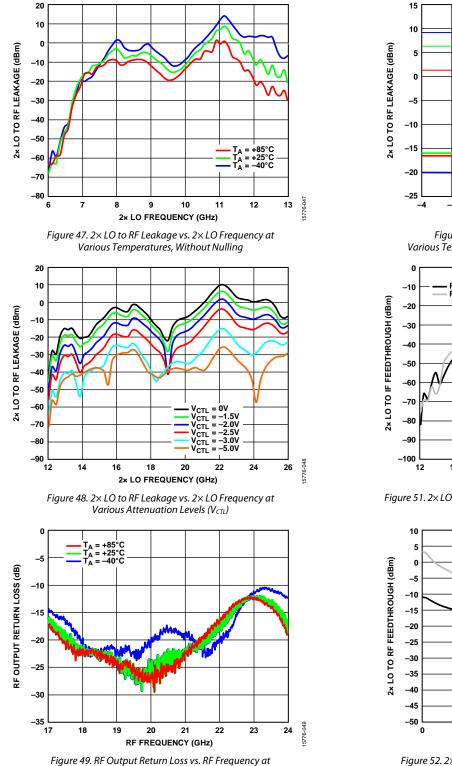




Figure 43. LO to RF Feedthrough vs. IF Frequency at Various Temperatures and Sidebands, IFx Pin = 0 dBm



-70 -5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0 IF FREQUENCY (GHz)

Data Sheet

ADMV1011

Various Temperatures, LO Frequency = 10 GHz, 0 dBm

(Hg) = 0

Figure 50. 2× LO to RF Leakage vs. LO Power at Various Temperatures and LO Frequencies, Without Nulling

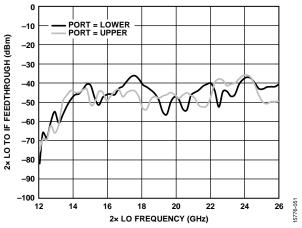


Figure 51. 2×LO to IF Leakage vs. 2×LO Frequency for Upper Sideband and Lower Sideband

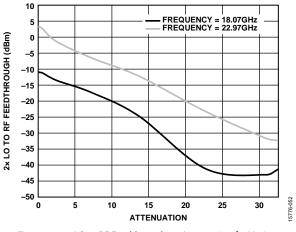
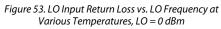
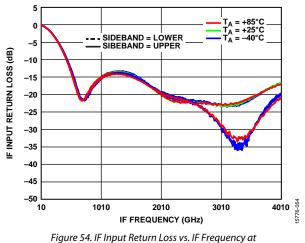




Figure 52. 2× LO to RF Feedthrough vs. Attenuation for Various Frequencies

Various Temperatures and Sidebands

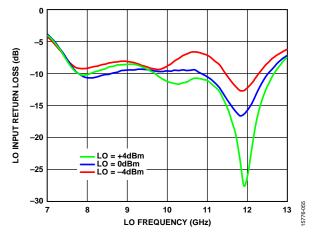


Figure 55. LO Input Return Loss vs. LO Frequency at Various LO Powers

SPURIOUS PERFORMANCE

Lower Sideband

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $T_A = 25^{\circ}$ C, LO = 0 dBm, and taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = -5 V unless otherwise noted.

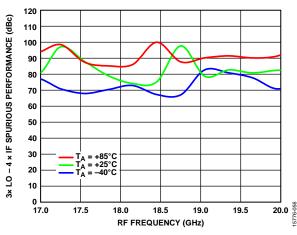


Figure 56. $3 \times LO - 4 \times IF$ Spurious Performance vs. RF Frequency at Various Temperatures, IF Frequency = 3.3 GHz

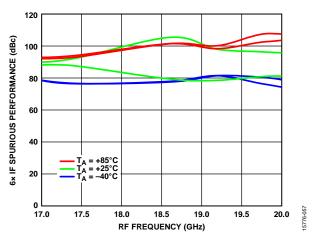


Figure 57. 6× IF Spurious Performance vs. RF Frequency at Various Temperatures, RF Frequency = 18 GHz

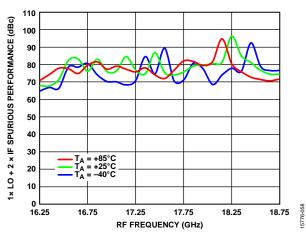


Figure 58. $1 \times LO + 2 \times IF$ Spurious Performance vs. RF Frequency at Various Temperatures

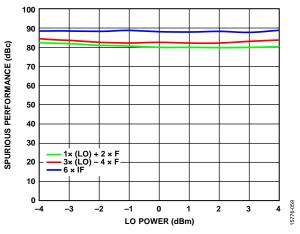


Figure 59. Spurious Performance vs. LO Power, RF Frequency = 18 GHz, IF Frequency = 3.3 GHz

Upper Sideband

Data specified at VDRF1 and VDRF2 = 5 V, VDLO = 3.5 V, IDRF1 = 220 mA, IDRF2 = 75 mA, $T_A = 25^{\circ}$ C, LO = 0 dBm, and taken with Mini-Circuits QCN-45+ power splitter/combiner, unless otherwise noted. VCTL2, VCTL3 = -5 V unless otherwise noted.

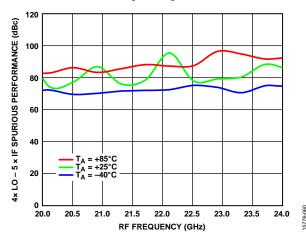


Figure 60. $4 \times LO - 5 \times IF$ Spurious Performance vs. RF Frequency at Various Temperatures, IF Frequency = 3.3 GHz

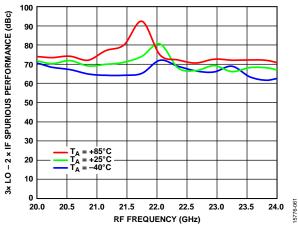


Figure 61. 3× LO – 2 × IF Spurious Performance vs. RF Frequency at Various Temperatures, IF Frequency = 3.3 GHz

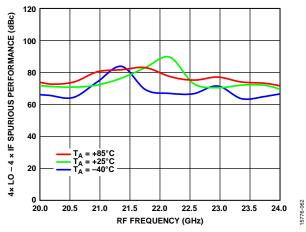


Figure 62. $4 \times LO - 4 \times IF$ Spurious Performance vs. RF Frequency at Various Temperatures, Frequency = 3.3 GHz

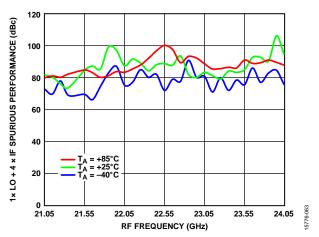


Figure 63. 1×LO + 4×IF Spurious Performance vs. RF Frequency at Various Temperatures, IF Frequency = 3.3 GHz

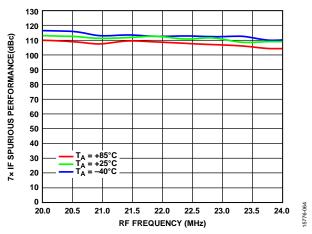


Figure 64. 7× IF Spurious Performance vs. RF Frequency at Various Temperatures, RF Frequency = 23 GHz

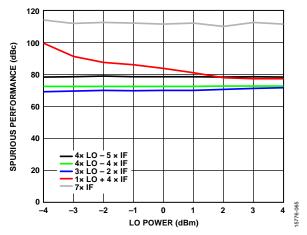


Figure 65. Spurious Performance vs. LO Power, RF Frequency = 23 GHz, IF Frequency = 3.3 GHz

$\mathbf{M}\times\mathbf{N}$ Spurious performance

Mixer spurious products are measured in dBc from the RF output power level. N/A means not applicable.

IF = 2 MHz at 0 dBm, LO = 10 GHz at 0 dBm.

			N × LO					
		1	2	3	4	5		
	0	52.2	30.9	56.1	63.4	77.1		
	1	68.2	0	61.1	66.2	99.1		
M×IF	2	73.6	47.1	55.9	43.5	99		
	3	59	43.2	50.2	71.8	101.4		
	4	77.1	58.7	21.4	65.5	99		
	5	N/A	52.3	30.9	56.3	63.2		

IF = 3 MHz at 0 dBm, LO = 10.5 GHz at 0 dBm.

			N × LO					
		1	2	3	4	5		
	0	50.5	21.8	69.6	62.1	N/A		
M IF	1	73	0	64.1	58.9	96.6		
	2	95.7	41.7	59.8	43.9	97.8		
M×IF	3	124.6	42.7	71.2	65.2	97.5		
	4	120.8	74.5	81.1	64.8	100.4		
	5	95.4	48.1	76	65	102.8		

IF = 4 MHz at 0 dBm, LO = 11 GHz at 0 dBm.

			N × LO					
		1	2	3	4	5		
	0	60.2	9.8	68.1	76.1	N/A		
	1	91.9	0	74.9	50.7	96.9		
M×IF	2	98.9	33.9	70	44.7	98.8		
	3	118.8	50.5	70.8	56.6	99.7		
	4	114	72.8	81.9	63.4	100.5		
	5	117.9	96.3	99.5	66.5	101.4		

IF = 2 GHz at 0 dBm, LO = 10.5 GHz at 0 dBm.

		N × LO				
		1	2	3	4	5
M×IF	0	50.5	22.3	68.5	53.7	N/A
	1	58.2	0	81.9	65.6	N/A
	2	69.5	41.1	90.1	47.6	N/A
	3	81.7	41.2	95.3	78.5	N/A
	4	91.1	59.9	102.8	83	N/A
	5	93.9	70.4	101.4	N/A	N/A

IF = 3 GHz at 0 dBm, LO = 10 GHz at 0 dBm.

		N × LO				
		1	2	3	4	5
M×IF	0	50.9	30.2	54.7	72.1	78.4
	1	58	0	82.2	67.1	N/A
	2	74.9	58.3	90.9	48.5	N/A
	3	87.1	66.6	98.2	92.3	N/A
	4	79.4	100	101.3	N/A	N/A
	5	N/A	N/A	N/A	N/A	N/A

IF = 4 GHz at 0 dBm, LO = 9.5 GHz at 0 dBm.

		N × LO				
		1	2	3	4	5
M×IF	0	53.3	47.1	42.1	55.9	94
	1	58.1	0	79.6	79.7	N/A
	2	64.8	63.7	97.9	49.8	N/A
	3	80.6	62.4	94.8	95.8	N/A
	4	96	103.5	98.3	N/A	N/A
	5	104.3	100.6	94.8	N/A	N/A

THEORY OF OPERATION

The ADMV1011 is a GaAs, MMIC, double sideband upconverter in a RoHS compliant package optimized for upper sideband and lower sideband point to point microwave radio applications operating in the 17 GHz to 24 GHz output frequency range. The ADMV1011 supports LO input frequencies of 8 GHz to 12 GHz and IF input frequencies of 2 GHz to 4 GHz.

The ADMV1011 uses a variable gain RF amplifier and an I/Q preceded by a double balanced mixer, where a driver amplifier drives the LO (see Figure 1). The combination of design, process, and packaging technology allows the functions of these subsystems to be integrated into a single die, using mature packaging and interconnection technologies to provide a high performance, low cost design with excellent electrical, mechanical, and thermal properties. In addition, the need for external components is minimized, optimizing cost and size.

LO DRIVER AMPLIFIER

The LO driver amplifier takes a single LO input and doubles the frequency, amplifying it to the desired LO signal level for the mixer to operate optimally. The LO driver amplifier requires a single dc bias voltage (VDLO), which draws about 160 mA at 3.5 V under the LO drive. The LO drive range of -4 dBm to +4 dBm makes it compatible with Analog Devices, Inc., wideband synthesizer portfolio without the requirement for an external LO driver amplifier.

MIXER

The mixer is an I/Q double balanced mixer and reduces the need for filtering unwanted sideband. An external 90° hybrid is required to select the desired sideband of operation.

The ADMV1011 has been optimized to work with the Mini Circuits QCN-45+ RF 90° hybrid.

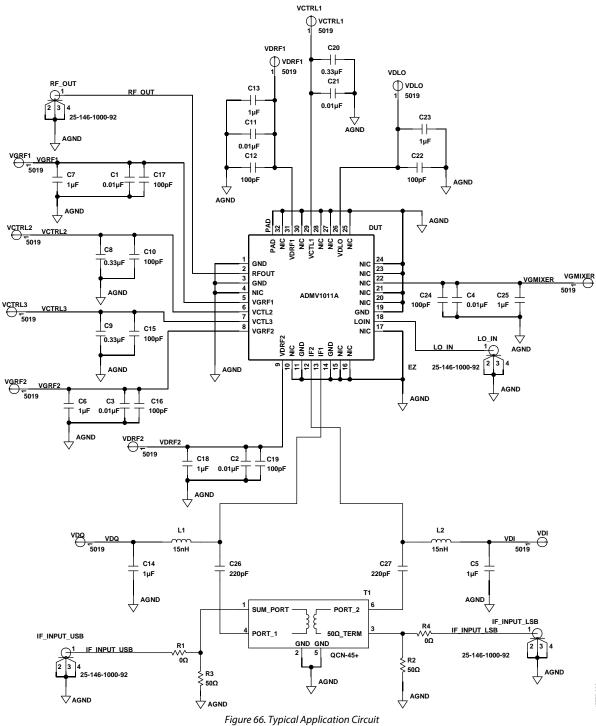
RF AMPLIFIER

The RF amplifier is a variable gain amplifier where the gain can be adjusted by changing the control voltages (VCTL2 and VCTL3). The RF amplifier requires two dc bias voltages (VDRF1 and VDRF2) and two dc gate bias voltages (VGRF1 and VGRF2) to operate. Starting at –1.8 V at the gate supply (VGRF1 and VGRF2), the RF amplifier is biased at 5 V (VDRF1 and VDRF2). Then, the gate bias (VGRF1 and VGRF2) is varied until the desired RF amplifier bias current (IDRF1 and IDRF2) is achieved. The desired RF amplifier bias current is 220 mA for IDRF1 and 75 mA for IDRF2 under small signal conditions.

The ADMV1011 has an internal band-pass filter between the mixer and the RF driver amplifier that reduces LO leakage and filters out the lower sideband at the RF output. The balanced input drive allows exceptional linearity performance compared to similar single-ended solutions.

The typical application circuit (see Figure 66) shows the necessary external components on the bias lines to eliminate any undesired stability problems for the RF amplifier and the LO amplifier.

The ADMV1011 upconverter comes in a compact, thermally enhanced, 4.9 mm \times 4.9 mm, 32-terminal ceramic leadless chip carrier (LCC) package. The ADMV1011 operates over the -40° C to $+85^{\circ}$ C temperature range.


APPLICATIONS INFORMATION

The evaluation board and the typical application circuit are optimized for low-side LO (upper sideband) performance with the Mini-Circuit QCN-45+ RF 90° hybrid.

The ADMV1011 can support IF frequencies from 4 GHz to dc because its I/Q mixers are double balanced.

TYPICAL APPLICATION CIRCUIT

The typical application circuit is shown in Figure 66. The application circuit shown has been replicated for the evaluation board circuit.

EVALUATION BOARD INFORMATION

The circuit board used in the application must use RF circuit design techniques. Signal lines must have 50 Ω impedance, and the package ground leads and exposed pad must be connected directly to the ground plane (see Figure 67 and Figure 68). Use a sufficient number of via holes to connect the top and bottom ground planes. The evaluation circuit board shown in Figure 69 is available from Analog Devices, upon request.

Layout

Solder the exposed pad on the underside of the ADMV1011 to a low thermal and electrical impedance ground plane. This pad is typically soldered to an exposed opening in the solder mask on the evaluation board. Connect these ground vias to all other ground layers on the evaluation board to maximize heat dissipation from the device package. Figure 67 shows the PCB land pattern footprint for the EVAL-ADMV1011, and Figure 68 shows the solder paste stencil for the EVAL-ADMV1011.

Power-On Sequence

Take the following steps to turn on the EVAL-ADMV1011:

- 1. Power up VGRF1 and VGRF2 with a –1.8 V supply.
- Power up VCTL2 and VCTL3 with -5 V supply for maximum conversion gain.
- 3. Power up e VDRF1 and VDRF2 with a 5 V supply.
- 4. Power up e VDLO with a 3.5 V supply.
- 5. Adjust the VGRF1 supply between −1.8 V to −0.8 V until IDRF1 = 220 mA.

- 6. Adjust the VGRF2 supply between −1.8 V to −0.8 V until IDRF2 = 75 mA.
- Connect LOIN to the LO signal generator with a LO power between -4 dBm to +4 dBm.
- 8. For the upper sideband, add a 0 Ω resistor (R1) and remove the R4 resistor from the board. For the lower sideband, add a 0 Ω resistor (R4) and remove the R1 resistor from the board.
- 9. Apply the IF signal to the appropriate port.

Power-Off Sequence

Take the following steps to turn off the EVAL-ADMV1011:

- 1. Turn off the LO and IF signals.
- 2. Set VGRF1 and VGRF2 to -1.8 V.
- 3. Set VCTL1 and VCTL2 to 0 V.
- 4. Set the VDRF1 and VDRF2 supplies to 0 V and then turn off the VDRF1 and VDRF2 supplies.
- 5. Set the VDLO supply to 0 V and then turn off the VDLO supply.
- 6. Turn off the VGRF1, VGRF2, VCTL1, and VCTL2 supplies.

2× LO Suppression

The EVAL-ADMV1011 can suppress the 2× LO signal through the VDI and VDQ test points. The common mode of the two IF signals is 0 V. Injecting a nonzero voltage at VDI and VDQ can change the 2× LO level. The 2× LO signal is from the LOIN pin of the ADMV1011.

Data Sheet

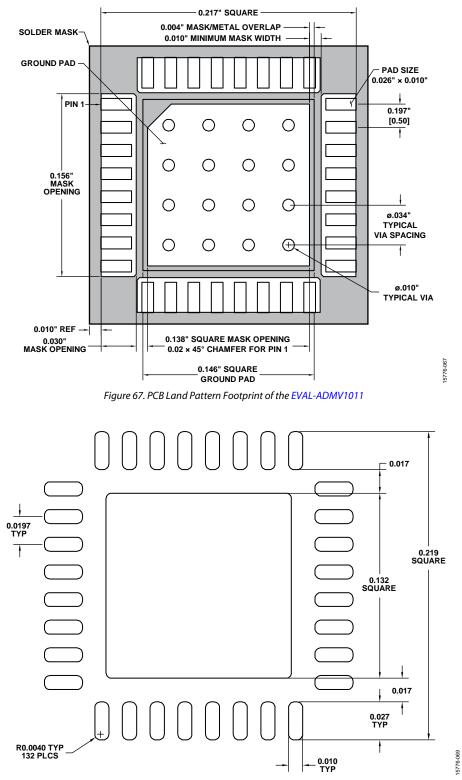
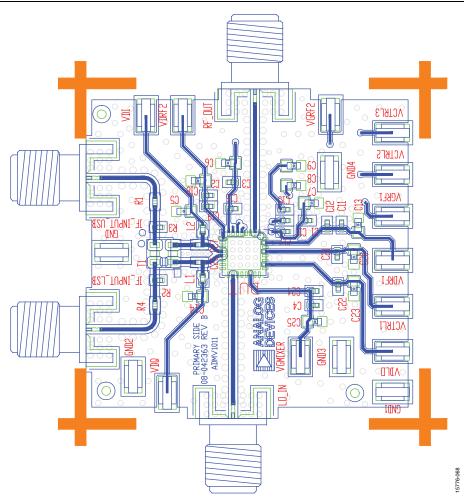
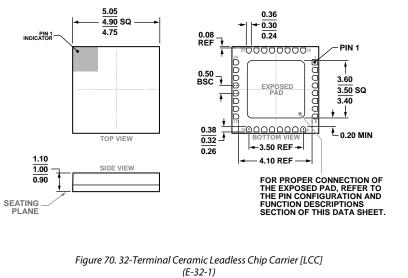


Figure 68. Solder Paste Stencil of the EVAL-ADMV1011




Figure 69. EVAL-ADMV1011 Evaluation Board Top Layer

BILL OF MATERIALS

Table 6.

Qty.	Reference Designator	Description	Manufacturing/Part No.
1	Evaluation board	РСВ	Analog Devices/08_042363a
6	C1 to C4, C11, C21	0.01 μF ceramic capacitors, X7R, 0402	Murata/GRM155R71E103KA01D
8	C10, C12, C15 to C17, C19, C22, C24	100 pF multilayer ceramic capacitors, NP0, high temperature, C0402	TDK/C1005NP01H101J050BA
8	C5 to C7, C13, C14, C18, C23, C25	1 μF monolithic ceramic capacitors, X5R, C0603	Murata/GRM188R61E105KA12D
3	C8, C9, C20	0.33 µF ceramic capacitors, X5R, C0603	AVX/0603YD334KAT2A
2	C26, C27	220 pF ceramic capacitors, C0G, 0402, C0402	Murata/GRM1555C1H221JA01D
16	GND, VDI, VDQ, GND1 to GND4, VDLO, VDRF1, VDRF2, VGRF1, VGRF2, VCTL1 to VCTL3, VGMIXER	Connector PCB test points, compact mini, 5019, CNKEY5019	Keystone Electronic Corp/5019
4	LO_IN, RF_OUT, IF_INPUT_LSB, IF_INPUT_USB	Connector PCB SMA, K_SRI-NS, CNSMAL460W295H156	SRI Connector Gage/25-146-1000-92
2	L1, L2	15 nH inductor chips, 0402, L0402-2	Coilcraft/0402HP-15NXJLU
2	R1, R4	0 Ω resistors, chip surface-mounted diode jumper, 0402	Panasonic/ERJ-2GE0R00X
1	R2	50 Ω resistor, high frequency chip, R0402	Vishay Precision Group/FC0402E50R0BST1
1	R3	50 Ω resistor, high frequency chip, 0402, R0402	Vishay Precision Group/FC0402E50R0FST1
1	T1	Transformer power splitter/combiner, 2500 to 4500 MHz, TSML126W63H42	Mini-Circuits/QCN-45+

OUTLINE DIMENSIONS

Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADMV1011AEZ	-40°C to +85°C	32-Terminal Ceramic Leadless Chip Carrier [LCC]	E-32-1
ADM1011-EVALZ		Evaluation Board	

¹ Z = RoHS Compliant Part.

©2017 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D15776-0-10/17(0)

www.analog.com

Rev. 0 | Page 25 of 25