TABLE OF CONTENTS | Features | 1 | |--------------------------|---| | Applications | 1 | | Functional Block Diagram | | | General Description | 1 | | Product Highlights | 1 | | Revision History | 2 | | Specifications | 3 | | Dual Supply | 3 | | Single Supply | 4 | | | | | Absolute Maximum Ratings | 5 | |---|----| | ESD Caution | 5 | | Pin Configuration and Function Descriptions | 6 | | Typical Performance Characteristics | 7 | | Test Circuits | 9 | | Terminology | 11 | | Outline Dimensions | 12 | | Ordering Guide | 13 | ### **REVISION HISTORY** ### 8/09—Rev. B to Rev. C | Updated Format | Universal | |----------------------------|-----------| | Changes to Table 1 | 3 | | Changes to Table 2 | 4 | | Updated Outline Dimensions | 12 | | Changes to Ordering Guide | | # **SPECIFICATIONS** ### **DUAL SUPPLY** V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, V_{L} = 5 V \pm 10%, GND = 0 V, unless otherwise noted. Table 1. | | B Version | | T Version | | | | | |--|-----------|----------|--------------------------------|--------|------------------------------------|--------|--| | | | −40°C to | −40°C to | | −55°C to | | | | Parameter ¹ | +25°C | +85°C | +125°C | +25°C | +125°C | Unit | Test Conditions/Comments | | ANALOG SWITCH | | | | | | | | | Analog Signal Range | | | $V_{\text{SS}}toV_{\text{DD}}$ | | $V_{\text{SS}} to V_{\text{DD}}$ | | | | R _{ON} | 25 | | | 25 | | Ωtyp | $V_D = \pm 12.5 \text{ V, } I_S = -10 \text{ mA}$ | | | 35 | 45 | 45 | 35 | 45 | Ω max | $V_{DD} = +13.5 \text{ V}, V_{SS} = -13.5 \text{ V}$ | | LEAKAGE CURRENTS | | | | | | | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | Source Off Leakage, Is (Off) | ±0.1 | | | ±0.1 | | nA typ | $V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$ see Figure 12 | | | ±0.25 | ±5 | ±15 | ±0.25 | ±15 | nA max | | | Drain Off Leakage, I _D (Off) | ±0.1 | | | ±0.1 | | nA typ | $V_D = \pm 15.5 \text{ V}, V_S = \mp 15.5 \text{ V};$ see Figure 12 | | | ±0.75 | ±5 | ±30 | ±0.75 | ±30 | nA max | | | Channel On Leakage, ID, Is (On) | ±0.4 | | | ±0.4 | | nA typ | $V_S = V_D = \pm 15.5 \text{ V}$; see Figure 13 | | | ±0.75 | ±5 | ±30 | ±0.75 | ±30 | nA max | | | DIGITAL INPUTS | | | | | | | | | Input High Voltage, V _{INH} | | 2.4 | 2.4 | | 2.4 | V min | | | Input Low Voltage, V _{INL} | | 0.8 | 0.8 | | 0.8 | V max | | | Input Current | | | | | | | | | l _{INL} or l _{INH} | | ±0.005 | ±0.005 | | ±0.005 | μA typ | $V_{IN} = V_{INL}$ or V_{INH} | | | | ±0.5 | ±0.5 | | ±0.5 | μA max | | | DYNAMIC CHARACTERISTICS ² | | | | | | | | | t transition | 160 | 200 | 200 | 145 | 200 | ns max | $R_L = 300 \Omega$, $C_L = 35 pF$; $V_{S1} = \pm 10 V$, | | | | | | | | | $V_{S2} = \mp 10 \text{ V}$; see Figure 14 | | Break-Before-Make Time Delay, t _D | 30 | | | 30 | | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$;
$V_{S1} = V_{S2} = \pm 10 V$; see Figure 15 | | | 5 | | | 5 | | ns min | | | Off Isolation | 80 | | | 80 | | dB typ | $R_L = 50 \Omega$, $f = 1 MHz$; see Figure 16 | | Channel-to-Channel Crosstalk | 90 | | | 70 | | dB typ | $R_L = 50 \Omega$, $f = 1 MHz$; see Figure 17 | | C _s (Off) | 6 | | | 6 | | pF typ | f = 1 MHz | | C _D , C _S (On) | 55 | | | 55 | | pF typ | f = 1 MHz | | POWER REQUIREMENTS | | | | | | | $V_{DD} = +16.5 \text{ V}, V_{SS} = -16.5 \text{ V}$ | | I_{DD} | 0.0001 | | | 0.0001 | | μA typ | $V_{IN} = 0 V \text{ or } 5 V$ | | | 1 | 2.5 | 2.5 | 1 | 2.5 | μA max | | | Iss | 0.0001 | | | 0.0001 | | μA typ | | | | 1 | 2.5 | 2.5 | 1 | 2.5 | μA max | | | l _L | 0.0001 | | | 0.0001 | | μA typ | $V_L = 5.5 \text{ V}$ | | | 1 | 2.5 | 2.5 | 1 | 2.5 | μA max | | $^{^1}$ Temperature ranges are as follows: B Version: -40°C to $+125^\circ\text{C}$; T Version: -55°C to $+125^\circ\text{C}$. 2 Guaranteed by design, not subject to production test. ### **SINGLE SUPPLY** V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, V_L = 5 V \pm 10%, GND = 0 V, unless otherwise noted. | | | B Version | 1 | TV | ersion | | | |--|--------|------------------|------------------------|--------|------------------------|--------|--| | | | −40°C to | −40°C to | | −55°C to | | | | Parameter ¹ | +25°C | +85°C | +125°C | +25°C | +125°C | Unit | Test Conditions/Comments | | ANALOG SWITCH | | | 0+-1/ | | 0+-1/ | v | | | Analog Signal Range | 40 | | 0 to V_{DD} | 40 | 0 to V_{DD} | ·- | V 3V 0 5 V 1 10 A | | Ron | 40 | 60 | 70 | 40 | 70 | Ωtyp | $V_D = 3 \text{ V}, 8.5 \text{ V}, I_S = -10 \text{ mA}$ | | L FAKACE CLIDDENIT | | 60 | 70 | | 70 | Ω max | $V_{DD} = 10.8 \text{ V}$ | | LEAKAGE CURRENT | . 0.4 | | | | | | $V_{DD} = 13.2 \text{ V}$ | | Source OFF Leakage, I₅(Off) | ±0.1 | | | ±0.1 | | nA typ | $V_D = 12.2 \text{ V/1 V, V}_S = 1 \text{ V/12.2 V;}$
see Figure 12 | | | ±0.25 | ±5 | ±15 | ±0.25 | ±15 | nA max | | | Drain OFF Leakage, I _D (Off) | ±0.1 | | | ±0.1 | | nA typ | $V_D = 12.2 \text{ V/1 V, V}_S = 1 \text{ V/12.2 V;}$
see Figure 12 | | | ±0.75 | ±5 | ±30 | ±0.75 | ±30 | nA max | | | Channel ON Leakage, ID, IS (On) | ±0.4 | | | ±0.4 | | nA typ | $V_S = V_D = 12.2 \text{ V/1 V}$; see Figure 13 | | | ±0.75 | ±5 | ±30 | ±0.75 | ±30 | nA max | _ | | DIGITAL INPUTS | | | | | | | | | Input High Voltage, V _{INH} | | 2.4 | 2.4 | | 2.4 | V min | | | Input Low Voltage, V _{INL} | | 0.8 | 0.8 | | 0.8 | V max | | | Input Current | | | | | | | | | linl or linh | | ±0.005 | ±0.005 | | ±0.005 | μA typ | V _{IN} = V _{INL} or V _{INH} | | | | ±0.5 | ±0.5 | | ±0.5 | μA max | | | DYNAMIC CHARACTERISTICS ² | | | | | | | | | transition | 180 | 250 | 250 | 170 | 250 | ns max | $R_L = 300 \Omega$, $C_L = 35 pF$; $V_{51} = 0 V/8 V$, $V_{52} = 8 V/0 V$; see Figure 14 | | Break-Before-Make Time Delay, t _D | 60 | | | 60 | | ns typ | $R_L = 300 \Omega$, $C_L = 35 pF$;
$V_{S1} = V_{S2} = 8 V$; see Figure 15 | | Off Isolation | 80 | | | 80 | | dB typ | $R_L = 50 \Omega$, $f = 1 MHz$; see Figure 16 | | Channel-to-Channel Crosstalk | 90 | | | 70 | | dB typ | $R_L = 50 \Omega$, f = 1 MHz; see Figure 17 | | C _s (Off) | 13 | | | 13 | | pF typ | f = 1 MHz | | C_D , C_S (On) | 65 | | | 65 | | pF typ | f = 1 MHz | | POWER REQUIREMENTS | | | | | | | $V_{DD} = 13.2 \text{ V}$ | | IDD | 0.0001 | | | 0.0001 | | μA typ | $V_{IN} = 0 \text{ V or } 5 \text{ V}$ | | | 1 | 2.5 | 2.5 | 1 | 2.5 | μA max | | | I _L | 0.0001 | | | 0.0001 | | μA typ | $V_{L} = 5.5 \text{ V}$ | | | 1 | 2.5 | 2.5 | 1 | 2.5 | μA max | | $^{^1}$ Temperature ranges are as follows: B Version: -40°C to $+125^\circ\text{C}$; T Version: -55°C to $+125^\circ\text{C}$. 2 Guaranteed by design, not subject to production test. ### **ABSOLUTE MAXIMUM RATINGS** $T_A=25$ °C unless otherwise noted. Table 3. | Parameter | Rating | |--|---| | V _{DD} to V _{SS} | 44 V | | V_{DD} to GND | -0.3 V to +25 V | | V _{ss} to GND | +0.3 V to -25 V | | V_L to GND | $-0.3 \text{ V to V}_{DD} + 0.3 \text{ V}$ | | Analog, Digital Inputs ¹ | V _{SS} – 2 V to V _{DD} + 2 V
or 30 mA, whichever
occurs first | | Continuous Current, S or D | 30 mA | | Peak Current, S or D (Pulsed at 1 ms,
10% Duty-Cycle Maximum) | 100 mA | | Operating Temperature Range | | | Industrial (B Version) | −40°C to +125°C | | Extended (T Version) | −55°C to +125°C | | Storage Temperature Range | −65°C to +150°C | | Junction Temperature | 150°C | | CERDIP Package, Power Dissipation | 600 mW | | θ_{JA} , Thermal Impedance | 110°C/W | | Lead Temperature, Soldering (10 sec) | 300°C | | PDIP Package, Power Dissipation | 400 mW | | θ_{JA} , Thermal Impedance | 100°C/W | | Lead Temperature, Soldering (10 sec) | 260°C | | SOIC Package, Power Dissipation | 400 mW | | θ_{JA} , Thermal Impedance | 155°C/W | | MSOP Package, Power Dissipation | 315 mW | | θ_{JA} , Thermal Impedance | 205°C/W | | Lead Temperature, Soldering | | | Vapor Phase (60 sec) | 215°C | | Infrared (15 sec) | 220°C | ¹Overvoltages at IN, S or D is clamped by internal diodes. Limit current to the maximum ratings given. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ### **ESD CAUTION** **ESD** (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality. ### PIN CONFIGURATION AND FUNCTION DESCRIPTIONS Figure 2. Pin Configuration **Table 4. Pin Function Description** | Pin No. | Mnemonic | Description | |---------|----------|--| | 1 | D | Drain terminal. May be an input or an output. | | 2 | S1 | Source terminal. May be an input or an output. | | 3 | GND | Ground (0 V) reference. | | 4 | V_{DD} | Most positive power supply potential. | | 5 | V_L | Logic power supply (5 V). | | 6 | IN | Logic control input. | | 7 | Vss | Most negative power supply potential in dual-supply applications. In single-supply applications, it may be connected to GND. | | 8 | S2 | Source terminal. May be an input or an output. | ### Table 5. Truth Table | Logic | Switch 1 | Switch 2 | |-------|----------|----------| | 0 | On | Off | | 1 | Off | On | ### TYPICAL PERFORMANCE CHARACTERISTICS Figure 3. R_{ON} as a Function of V_D (V_S), Dual-Supply Voltage Figure 4. R_{ON} as a Function of V_D (V_S) for Different Temperatures Figure 5. Leakage Currents as a Function of $V_S(V_D)$ Figure 6. R_{ON} as a Function of V_D (V_S), Single-Supply Voltage Figure 7. R_{ON} as a Function of V_D (V_S) for Different Temperatures Figure 8. Leakage Currents as a Function of $V_S(V_D)$ Figure 9. Supply Current (ISUPPLY) vs. Input Switching Frequency Figure 10. Transition Time (ttransition) vs. Power Supply Voltage # **TEST CIRCUITS** Figure 11. On Resistance Figure 12. Off Leakage Figure 13. On Leakage Figure 14. Transition Time, ttransition Figure 15. Break-Before-Make Time Delay, t_D Figure 17. Crosstalk ### **TERMINOLOGY** V_{DD} Most positive power supply potential. \mathbf{V}_{ss} Most negative power supply potential in dual-supply applications. In single-supply applications, it may be connected to GND. V_{L} Logic power supply (5 V). **GND** Ground (0 V) reference. S Source terminal. May be an input or an output. D Drain terminal. May be an input or an output. IN Logic control input. RON Ohmic resistance between D and S. Is (Off) Source leakage current with the switch off. I_D (Off) Drain leakage current with the switch off. I_D , I_S (On) Channel leakage current with the switch on. $V_D(V_S)$ Analog voltage on terminals D, S. Cs (Off) Off switch source capacitance. C_D , C_S (On) On switch capacitance. **t**transition Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another. \mathbf{t}_{D} Off time or on time measured between the 90% points of both switches when switching from one address state to the other. V_{INL} Maximum input voltage for Logic 0. V_{INI} Minimum input voltage for Logic 1. $\mathbf{I}_{\mathrm{INL}}\left(\mathbf{I}_{\mathrm{INH}}\right)$ Input current of the digital input. Crosstalk A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance. Off Isolation A measure of unwanted signal coupling through an off channel. $I_{\rm DD}$ Positive supply current. Iss Negative supply current. ### **OUTLINE DIMENSIONS** #### **COMPLIANT TO JEDEC STANDARDS MS-001** CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS. Figure 18. 8-Lead Plastic Dual In-Line Package [PDIP] Narrow Body (N-8) Dimensions shown in inches and (millimeters) CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 19. 8-Lead Ceramic Dual In-Line Package [CERDIP] (Q-8) Dimensions shown in inches and (millimeters) #### COMPLIANT TO JEDEC STANDARDS MO-187-AA Figure 20. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN. Figure 21. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8) Dimensions shown in millimeters and (inches) ### **ORDERING GUIDE** | Model | Temperature Range | Package Description | Package Option | Branding | |-------------------------------|-------------------|--|----------------|----------| | ADG419BN | -40°C to +125°C | 8-Lead Plastic Dual In-Line Package [PDIP] | N-8 | | | ADG419BNZ ¹ | -40°C to +125°C | 8-Lead Plastic Dual In-Line Package [PDIP] | N-8 | | | ADG419BR | -40°C to +125°C | 8-Lead Standard Small Outline Package [SOIC_N] | R-8 | | | ADG419BR-REEL | −40°C to +125°C | 8-Lead Standard Small Outline Package [SOIC_N] | R-8 | | | ADG419BR-REEL7 | -40°C to +125°C | 8-Lead Standard Small Outline Package [SOIC_N] | R-8 | | | ADG419BRZ ¹ | -40°C to +125°C | 8-Lead Standard Small Outline Package [SOIC_N] | R-8 | | | ADG419BRZ-REEL ¹ | -40°C to +125°C | 8-Lead Standard Small Outline Package [SOIC_N] | R-8 | | | ADG419BRZ-REEL7 ¹ | -40°C to +125°C | 8-Lead Standard Small Outline Package [SOIC_N] | R-8 | | | ADG419BRM | −40°C to +125°C | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | SBB | | ADG419BRM-REEL | -40°C to +125°C | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | SBB | | ADG419BRM-REEL7 | −40°C to +125°C | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | SBB | | ADG419BRMZ ¹ | -40°C to +125°C | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | SBB# | | ADG419BRMZ-REEL ¹ | -40°C to +125°C | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | SBB# | | ADG419BRMZ-REEL7 ¹ | -40°C to +125°C | 8-Lead Mini Small Outline Package [MSOP] | RM-8 | SBB# | | ADG419TQ | −55°C to +125°C | 8-Lead Ceramic Dual In-Line Package [CERDIP] | Q-8 | | $^{^1}$ Z = RoHS Compliant Part, # denotes that RoHS compliant part is top or bottom marked. **NOTES** **NOTES** **NOTES**