# **Non-Inverting 3-State Buffer**

# NL17SZ126

The NL17SZ126 is a single non-inverting buffer in tiny footprint packages.

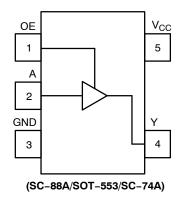
## Features

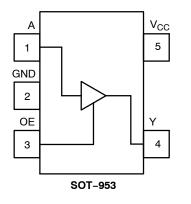
- Designed for 1.65 V to 5.5 V  $V_{CC}$  Operation
- 2.3 ns  $t_{PD}$  at  $V_{CC} = 5 V (typ)$
- Inputs/Outputs Overvoltage Tolerant up to 5.5 V
- IOFF Supports Partial Power Down Protection
- Source/Sink 24 mA at 3.0 V
- Available in SC-88A, SC-74A, SOT-553, SOT-953 and UDFN6 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant



Figure 1. Logic Symbol




## **ON Semiconductor®**


www.onsemi.com

|                     |                                                  | MARKING<br>DIAGRAMS                   |
|---------------------|--------------------------------------------------|---------------------------------------|
|                     | SC-88A<br>DF SUFFIX<br>CASE 419A                 | □ □ □<br>×× м•<br>∘ •                 |
|                     | SC-74A<br>DBV SUFFIX<br>CASE 318BQ               |                                       |
| e e e               | SOT-553<br>XV5 SUFFIX<br>CASE 463B               | XX M•                                 |
|                     | SOT-953<br>P5 SUFFIX<br>CASE 527AE               |                                       |
|                     | UDFN6<br>1.45 x 1.0<br>CASE 517AQ                | ● ×M                                  |
| Ŷ                   | UDFN6<br>1.0 x 1.0<br>CASE 517BX                 | 1 • X M                               |
| XX<br>M             | = Specific Devi<br>= Date Code*<br>= Pb-Free Pac |                                       |
|                     | Vicrodot may be in eil                           |                                       |
| *Date Co<br>vary de | ode orientation and/o<br>pending upon manufa     | or position may<br>acturing location. |

#### ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.








Figure 2. Pinout (Top View)

## PIN ASSIGNMENT

(SC-88A/SOT-553/SC-74A)

| Pin | Function        |  |  |
|-----|-----------------|--|--|
| 1   | OE              |  |  |
| 2   | A               |  |  |
| 3   | GND             |  |  |
| 4   | Y               |  |  |
| 5   | V <sub>CC</sub> |  |  |

#### PIN ASSIGNMENT (SOT-953)

| Pin | Function        |
|-----|-----------------|
| 1   | А               |
| 2   | GND             |
| 3   | OE              |
| 4   | Y               |
| 5   | V <sub>CC</sub> |

#### **PIN ASSIGNMENT (UDFN)**

| Pin | Function        |
|-----|-----------------|
| 1   | OE              |
| 2   | A               |
| 3   | GND             |
| 4   | Y               |
| 5   | NC              |
| 6   | V <sub>CC</sub> |

## FUNCTION TABLE

| Inp | Output |   |
|-----|--------|---|
| OE  | Α      | Y |
| Н   | L      | L |
| Н   | Н      | Н |
| L   | Х      | Z |

X = Don't Care

#### MAXIMUM RATINGS

| Symbol                              | Characteristics                                                            |                                                                                               | Value                                                         | Unit |  |
|-------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------|------|--|
| V <sub>CC</sub>                     | DC Supply Voltage<br>SC-74A, SC-88A, St                                    | SC-88A (NLV)<br>OT-953, SOT-553, UDFN6                                                        | -0.5 to +7.0<br>-0.5 to +6.5                                  | V    |  |
| V <sub>IN</sub>                     | DC Input Voltage<br>SC-74A, SC-88A, S                                      | SC–88A (NLV)<br>OT–953, SOT–553, UDFN6                                                        | -0.5 to +7.0<br>-0.5 to +6.5                                  | V    |  |
| V <sub>OUT</sub>                    | SC-88Å (NLV)                                                               | e-Mode (High or Low State)<br>Tri-State Mode (Note 1)<br>er-Down Mode (V <sub>CC</sub> = 0 V) | -0.5 to V <sub>CC</sub> + 0.5<br>-0.5 to +7.0<br>-0.5 to +7.0 | V    |  |
|                                     | DC Output Voltage Active<br>SC-74A, SC-88A, SOT-953, SOT-553, UDFN6<br>Pow | -0.5 to V <sub>CC</sub> + 0.5<br>-0.5 to +6.5<br>-0.5 to +6.5                                 | V                                                             |      |  |
| I <sub>IK</sub>                     | DC Input Diode Current                                                     | V <sub>IN</sub> < GND                                                                         | -50                                                           | mA   |  |
| I <sub>OK</sub>                     | DC Output Diode Current                                                    | -50                                                                                           | mA                                                            |      |  |
| I <sub>OUT</sub>                    | DC Output Source/Sink Current                                              |                                                                                               | ±50                                                           | mA   |  |
| I <sub>CC</sub> or I <sub>GND</sub> | DC Supply Current per Supply Pin or Ground Pin                             |                                                                                               | ±100                                                          | mA   |  |
| T <sub>STG</sub>                    | Storage Temperature Range                                                  |                                                                                               | -65 to +150                                                   | °C   |  |
| ΤL                                  | Lead Temperature, 1 mm from Case for 10 secs                               |                                                                                               | 260                                                           | °C   |  |
| TJ                                  | Junction Temperature Under Bias                                            |                                                                                               | +150                                                          | °C   |  |
| $\theta_{JA}$                       | Thermal Resistance (Note 2)                                                | SC-88A<br>SC-74A<br>SOT-553<br>SOT-953<br>UDFN6                                               | 377<br>320<br>324<br>254<br>154                               | °C/W |  |
| P <sub>D</sub>                      | ower Dissipation in Still Air<br>SC-74A<br>SOT-553<br>SOT-953<br>UDFN6     |                                                                                               | 332<br>390<br>386<br>491<br>812                               | mW   |  |
| MSL                                 | Moisture Sensitivity                                                       |                                                                                               | Level 1                                                       | -    |  |
| F <sub>R</sub>                      | Flammability Rating                                                        | Oxygen Index: 28 to 34                                                                        | UL 94 V-0 @ 0.125 in                                          | -    |  |
| $V_{\text{ESD}}$                    | ESD Withstand Voltage (Note 3)                                             | Human Body Model<br>Charged Device Model                                                      | 2000<br>1000                                                  | V    |  |
| I <sub>Latchup</sub>                | Latchup Performance (Note 4)                                               |                                                                                               | ±100                                                          | mA   |  |

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.
Applicable to devices with outputs that may be tri-stated.
Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.
Tested to EIA/JESD78 Class II.

#### **RECOMMENDED OPERATING CONDITIONS**

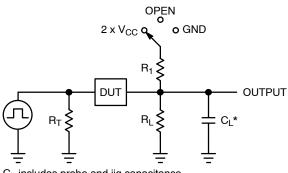
| Symbol                          | Characteristics                                                       |                                                                                                                                                                           | Min              | Max                           | Unit |
|---------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------|------|
| V <sub>CC</sub>                 | Positive DC Supply Voltage                                            | Positive DC Supply Voltage                                                                                                                                                |                  |                               | V    |
| V <sub>IN</sub>                 | DC Input Voltage                                                      |                                                                                                                                                                           | 0                | 5.5                           | V    |
| V <sub>OUT</sub>                |                                                                       | e–Mode (High or Low State)<br>Tri–State Mode (Note 1)<br>er–Down Mode (V <sub>CC</sub> = 0 V)                                                                             | 0<br>0<br>0      | V <sub>CC</sub><br>5.5<br>5.5 |      |
| T <sub>A</sub>                  | Operating Temperature Range                                           |                                                                                                                                                                           | -55              | +125                          | °C   |
| t <sub>r</sub> , t <sub>f</sub> | Input Rise and Fall Time<br>SC-88A (NLV)                              |                                                                                                                                                                           | 0<br>0           | 100<br>20                     | ns/V |
|                                 | Input Rise and Fall Time<br>(SC-74A, SC-88A, SOT-953, SOT-553, UDFN6) | $\begin{array}{l} V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 4.5 \ V \ to \ 5.5 \ V \end{array}$ | 0<br>0<br>0<br>0 | 20<br>20<br>10<br>5           |      |

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

#### DC ELECTRICAL CHARACTERISTICS

|                  |                                   |                                                        | V <sub>CC</sub>                                        | T,                                                               | T <sub>A</sub> = 25°C                                     |                                                  |                                                                  | –55°C ≤ T <sub>A</sub> ≤ 125°C                   |       |  |
|------------------|-----------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|-------|--|
| Symbol           | Parameter                         | Condition                                              | (V)                                                    | Min                                                              | Тур                                                       | Max                                              | Min                                                              | Max                                              | Units |  |
| VIH              | High-Level Input                  |                                                        | 1.65 to 1.95                                           | 0.65 V <sub>CC</sub>                                             | -                                                         | -                                                | 0.65 V <sub>CC</sub>                                             | -                                                | V     |  |
|                  | Voltage                           |                                                        | 2.3 to 5.5                                             | 0.70 V <sub>CC</sub>                                             | -                                                         | -                                                | 0.70 V <sub>CC</sub>                                             | -                                                |       |  |
| VIL              | Low-Level Input                   |                                                        | 1.65 to 1.95                                           | -                                                                | -                                                         | 0.35 V <sub>CC</sub>                             | -                                                                | $0.35  V_{CC}$                                   | V     |  |
|                  | Voltage                           |                                                        | 2.3 to 5.5                                             | -                                                                | -                                                         | 0.30 V <sub>CC</sub>                             | -                                                                | 0.30 V <sub>CC</sub>                             |       |  |
| V <sub>OH</sub>  | High-Level Output<br>Voltage      |                                                        | 1.65 to 5.5<br>1.65<br>2.3<br>2.7<br>3.0<br>3.0<br>4.5 | V <sub>CC</sub> - 0.1<br>1.29<br>1.9<br>2.2<br>2.4<br>2.3<br>3.8 | V <sub>CC</sub><br>1.4<br>2.1<br>2.4<br>2.7<br>2.5<br>4.0 |                                                  | V <sub>CC</sub> - 0.1<br>1.29<br>1.9<br>2.2<br>2.4<br>2.3<br>3.8 | -<br>-<br>-<br>-<br>-                            | V     |  |
| V <sub>OL</sub>  | Low-Level Output<br>Voltage       |                                                        | 1.65 to 5.5<br>1.65<br>2.3<br>2.7<br>3.0<br>3.0<br>4.5 | -<br>-<br>-<br>-<br>-                                            | -<br>0.08<br>0.2<br>0.22<br>0.28<br>0.38<br>0.38          | 0.1<br>0.24<br>0.3<br>0.4<br>0.4<br>0.55<br>0.55 | -<br>-<br>-<br>-<br>-                                            | 0.1<br>0.24<br>0.3<br>0.4<br>0.4<br>0.55<br>0.55 | V     |  |
| I <sub>IN</sub>  | Input Leakage Current             | $V_{IN} = 5.5 \text{ V or GND}$                        | 1.65 to 5.5                                            | -                                                                | -                                                         | ±0.1                                             | -                                                                | ±1.0                                             | μA    |  |
| I <sub>OZ</sub>  | 3-State Output<br>Leakage Current | $V_{OUT} = 0 V \text{ to } 5.5 V$                      | 1.65 to 5.5                                            | _                                                                | -                                                         | ±0.5                                             | _                                                                | ±5.0                                             | μΑ    |  |
| I <sub>OFF</sub> | Power Off Leakage<br>Current      | V <sub>IN</sub> = 5.5 V or<br>V <sub>OUT</sub> = 5.5 V | 0                                                      | -                                                                | -                                                         | 1.0                                              | _                                                                | 10                                               | μΑ    |  |
| I <sub>CC</sub>  | Quiescent Supply<br>Current       | $V_{IN} = V_{CC}$ or GND                               | 5.5                                                    | -                                                                | -                                                         | 1.0                                              | -                                                                | 10                                               | μA    |  |

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

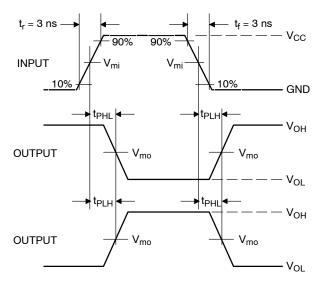

#### AC ELECTRICAL CHARACTERISTICS

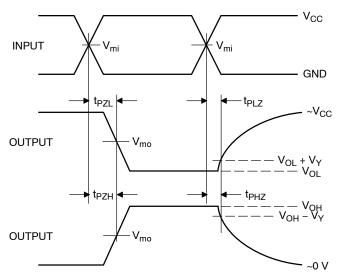
|                   |                                |                                       | V <sub>CC</sub> | T <sub>A</sub> = 25°C |     | –55°C ≤ T | <sub>A</sub> ≤ 125°C |      |       |
|-------------------|--------------------------------|---------------------------------------|-----------------|-----------------------|-----|-----------|----------------------|------|-------|
| Symbol            | Parameter                      | Condition                             | (V)             | Min                   | Тур | Max       | Min                  | Max  | Units |
| t <sub>PLH,</sub> | Propagation Delay, A to Y      | $R_L$ = 1 MΩ, $C_L$ = 15 pF           | 1.65 to 1.95    | -                     | 6.0 | 10        | -                    | 10.5 | ns    |
| t <sub>PHL</sub>  | (Figures 3 and 4)              | $R_L$ = 1 MΩ, $C_L$ = 15 pF           | 2.3 to 2.7      | -                     | 3.4 | 7.5       | -                    | 8.0  |       |
|                   |                                | $R_L$ = 1 MΩ, $C_L$ = 15 pF           | 3.0 to 3.6      | -                     | 2.5 | 5.2       | -                    | 5.5  |       |
|                   |                                | $R_L = 500 \ \Omega, \ C_L = 50 \ pF$ |                 | -                     | 2.9 | 5.7       | -                    | 6.0  |       |
|                   |                                | $R_L$ = 1 MΩ, $C_L$ = 15 pF           | 4.5 to 5.5      | -                     | 2.0 | 4.5       | -                    | 4.8  |       |
|                   |                                | $R_L = 500 \ \Omega, \ C_L = 50 \ pF$ |                 | -                     | 2.3 | 5.0       | -                    | 5.3  |       |
| t <sub>PZH,</sub> | Output Enable Time,<br>OF to Y |                                       | 1.65 to 1.95    | -                     | 6.5 | 9.5       | -                    | 10   | ns    |
| t <sub>PZL</sub>  | (Figures 3 and 4)              |                                       | 2.3 to 2.7      | -                     | 3.6 | 8.5       | -                    | 9.0  |       |
|                   |                                |                                       | 3.0 to 3.6      | -                     | 2.8 | 6.2       | -                    | 6.5  |       |
|                   |                                |                                       | 4.5 to 5.5      | -                     | 2.0 | 5.5       | -                    | 5.8  |       |
| t <sub>PHZ,</sub> | Output Disable Time,           |                                       | 1.65 to 1.95    | -                     | 5.0 | 10        | -                    | 10.5 | ns    |
| t <sub>PLZ</sub>  | OE to Y<br>(Figures 3 and 4)   |                                       | 2.3 to 2.7      | -                     | 3.3 | 8.0       | -                    | 8.5  |       |
|                   |                                |                                       | 3.0 to 3.6      | -                     | 2.7 | 5.7       | -                    | 6.0  |       |
|                   |                                |                                       | 4.5 to 5.5      | -                     | 2.6 | 4.7       | -                    | 5.0  |       |

#### **CAPACITIVE CHARACTERISTICS**

| Symbol           | Parameter                                 | Condition                                                                                                    | Typical | Units |
|------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------|-------|
| C <sub>IN</sub>  | Input Capacitance                         | $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$                                                                 | 2.5     | pF    |
| C <sub>OUT</sub> | Output Capacitance                        | $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$                                                                 | 2.5     | pF    |
| C <sub>PD</sub>  | Power Dissipation Capacitance<br>(Note 5) | 10 MHz, $V_{CC}$ = 3.3 V, $V_{IN}$ = 0 V or $V_{CC}$<br>10 MHz, $V_{CC}$ = 5.5 V, $V_{IN}$ = 0 V or $V_{CC}$ | 9<br>11 | pF    |

5.  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation:  $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$ .  $C_{PD}$  is used to determine the no-load dynamic power consumption;  $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$ .





| Switch<br>Position | C <sub>L</sub> , pF                     | $R_{L}, \Omega$                                                                                            | R <sub>1</sub> , Ω                                                                                        |  |  |
|--------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| Open               | See AC Characteristics Table            |                                                                                                            |                                                                                                           |  |  |
| $2 \times V_{CC}$  | 50                                      | 500                                                                                                        | 500                                                                                                       |  |  |
| GND                | 50                                      | 500                                                                                                        | 500                                                                                                       |  |  |
|                    | Position<br>Open<br>2 x V <sub>CC</sub> | Position         See AC Character           0pen         See AC Character           2 x V <sub>CC</sub> 50 | Position         Epril           Open         See AC Characteristics Tat           2 x V <sub>CC</sub> 50 |  |  |

X = Don't Care

 $C_L$  includes probe and jig capacitance  $R_T$  is  $Z_{OUT}$  of pulse generator (typically 50  $\Omega)$  f = 1 MHz

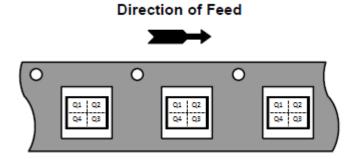
#### Figure 3. Test Circuit





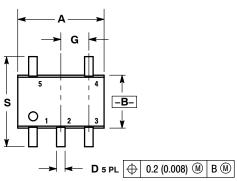
#### Figure 4. Switching Waveforms

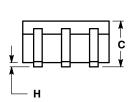
|                     |                     | Vm                                  |                                                                           |                    |
|---------------------|---------------------|-------------------------------------|---------------------------------------------------------------------------|--------------------|
| V <sub>CC</sub> , V | V <sub>mi</sub> , V | t <sub>PLH</sub> , t <sub>PHL</sub> | t <sub>PZL</sub> , t <sub>PLZ</sub> , t <sub>PZH</sub> , t <sub>PHZ</sub> | V <sub>Y</sub> , V |
| 1.65 to 1.95        | V <sub>CC</sub> /2  | V <sub>CC</sub> /2                  | V <sub>CC</sub> /2                                                        | 0.15               |
| 2.3 to 2.7          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2                  | V <sub>CC</sub> /2                                                        | 0.15               |
| 3.0 to 3.6          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2                  | V <sub>CC</sub> /2                                                        | 0.3                |
| 4.5 to 5.5          | V <sub>CC</sub> /2  | V <sub>CC</sub> /2                  | V <sub>CC</sub> /2                                                        | 0.3                |

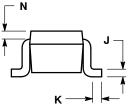

#### **DEVICE ORDERING INFORMATION**

| Device                              | Packages                | Specific Device Code   | Pin 1 Orientation<br>(See below) | Shipping <sup>†</sup> |
|-------------------------------------|-------------------------|------------------------|----------------------------------|-----------------------|
| NL17SZ126DFT2G                      | SC-88A                  | M2                     | Q4                               | 3000 / Tape & Reel    |
| NLV17SZ126DFT2G*                    | SC-88A                  | M2                     | Q4                               | 3000 / Tape & Reel    |
| NL17SZ126DBVT1G                     | SC-74A                  | AJ                     | Q4                               | 3000 / Tape & Reel    |
| NL17SZ126XV5T2G                     | SOT-553                 | M2                     | Q4                               | 4000 / Tape & Reel    |
| NL17SZ126P5T5G                      | SOT-953                 | R<br>(Rotated 180° CW) | Q2                               | 8000 / Tape & Reel    |
| NL17SZ126MU1TCG<br>(In Development) | UDFN6, 1.45 x 1.0, 0.5P | TBD                    | Q4                               | 3000 / Tape & Reel    |
| NL17SZ126MU3TCG<br>(In Development) | UDFN6, 1.0 x 1.0, 0.35P | TBD                    | Q4                               | 3000 / Tape & Reel    |

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.


\*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable.

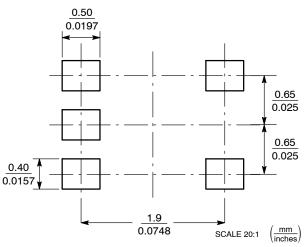

## Pin 1 Orientation in Tape and Reel




#### PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L

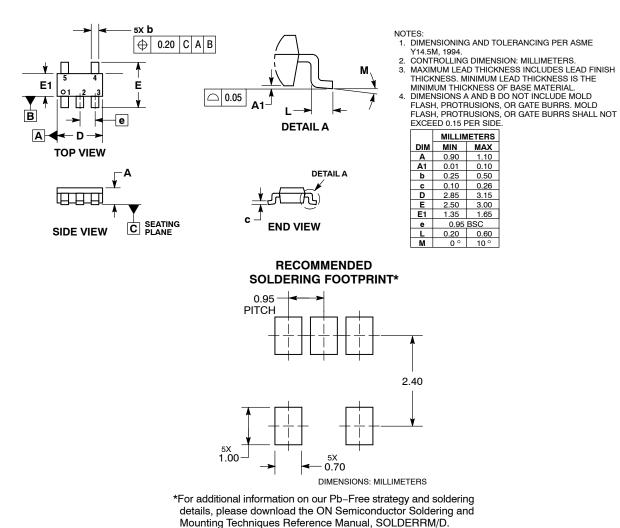






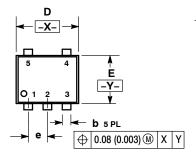

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

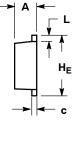
|     | INCHES    |       | MILLIMETERS |      |  |
|-----|-----------|-------|-------------|------|--|
| DIM | MIN       | MAX   | MIN         | MAX  |  |
| Α   | 0.071     | 0.087 | 1.80        | 2.20 |  |
| В   | 0.045     | 0.053 | 1.15        | 1.35 |  |
| С   | 0.031     | 0.043 | 0.80        | 1.10 |  |
| D   | 0.004     | 0.012 | 0.10        | 0.30 |  |
| G   | 0.026 BSC |       | 0.65 BSC    |      |  |
| Η   |           | 0.004 |             | 0.10 |  |
| ſ   | 0.004     | 0.010 | 0.10        | 0.25 |  |
| Κ   | 0.004     | 0.012 | 0.10        | 0.30 |  |
| Ν   | 0.008 REF |       | 0.20 REF    |      |  |
| s   | 0.079     | 0.087 | 2.00        | 2.20 |  |


**SOLDER FOOTPRINT\*** 



\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

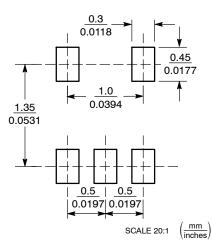

#### PACKAGE DIMENSIONS


#### SC-74A CASE 318BQ ISSUE B



#### PACKAGE DIMENSIONS

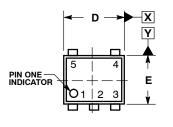
SOT-553, 5 LEAD CASE 463B **ISSUE C** 



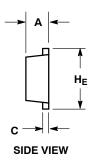


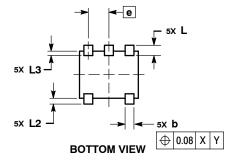

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

|     | MILLIMETERS |          |      | INCHES |           |       |
|-----|-------------|----------|------|--------|-----------|-------|
| DIM | MIN         | NOM      | MAX  | MIN    | NOM       | MAX   |
| Α   | 0.50        | 0.55     | 0.60 | 0.020  | 0.022     | 0.024 |
| b   | 0.17        | 0.22     | 0.27 | 0.007  | 0.009     | 0.011 |
| С   | 0.08        | 0.13     | 0.18 | 0.003  | 0.005     | 0.007 |
| D   | 1.55        | 1.60     | 1.65 | 0.061  | 0.063     | 0.065 |
| E   | 1.15        | 1.20     | 1.25 | 0.045  | 0.047     | 0.049 |
| е   |             | 0.50 BSC |      |        | 0.020 BSC | )     |
| L   | 0.10        | 0.20     | 0.30 | 0.004  | 0.008     | 0.012 |
| HE  | 1.55        | 1.60     | 1.65 | 0.061  | 0.063     | 0.065 |


#### **SOLDERING FOOTPRINT\***



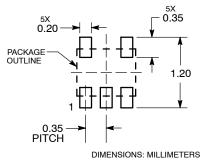

\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.


#### **PACKAGE DIMENSIONS**

SOT-953 CASE 527AE ISSUE E



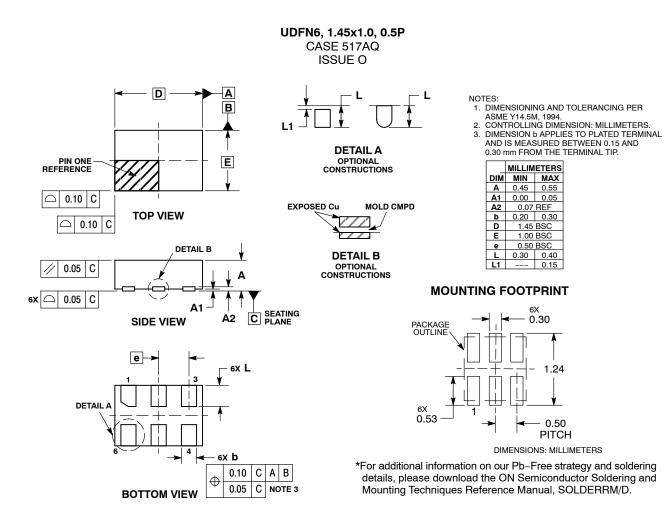
TOP VIEW



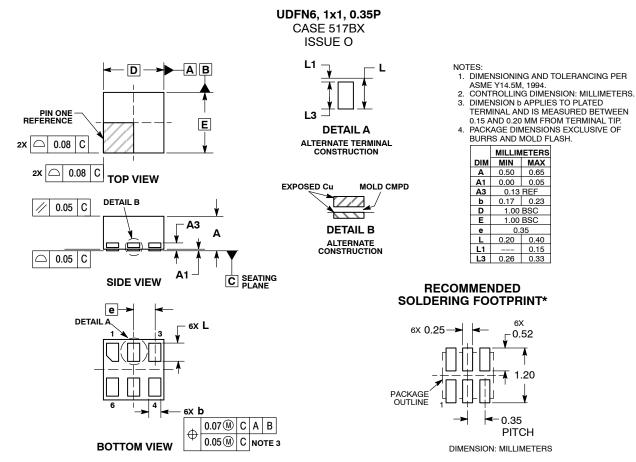



- NOTES:
   1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
   2. CONTROLLING DIMENSION: MILLIMETERS
   3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL.
   4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

|     | MILLIMETERS |      |      |
|-----|-------------|------|------|
| DIM | MIN         | NOM  | MAX  |
| Α   | 0.34        | 0.37 | 0.40 |
| b   | 0.10        | 0.15 | 0.20 |
| С   | 0.07        | 0.12 | 0.17 |
| D   | 0.95        | 1.00 | 1.05 |
| Е   | 0.75        | 0.80 | 0.85 |
| e   | 0.35 BSC    |      |      |
| HE  | 0.95        | 1.00 | 1.05 |
| L   | 0.175 REF   |      |      |
| L2  | 0.05        | 0.10 | 0.15 |
| L3  |             |      | 0.15 |


#### **SOLDERING FOOTPRINT\***




\*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

www.onsemi.com 11

#### PACKAGE DIMENSIONS



#### PACKAGE DIMENSIONS



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor and the support or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hard usal classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hard usa, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

### ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

0