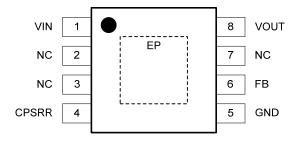
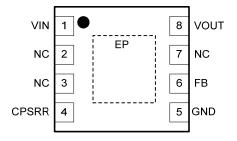

Ordering Information

Part Number	Output Voltage	Top Mark	Temperature Range	Package	Lead Finish
MIC5283YME	Adjustable	5283YME	-40°C to +125°C	8-Pin ePad SOIC	Pb-Free
MIC5283-3.3YME	3.3V	5283-33YME	-40°C to +125°C	8-Pin ePad SOIC	Pb-Free
MIC5283-5.0YME	5.0V	5283-50YME	-40°C to +125°C	8-Pin ePad SOIC	Pb-Free
MIC5283YML	Adjustable	A83	-40°C to +125°C	3mmx3mm MLF [®] -8L	Pb-Free
MIC5283-3.3YML	3.3V	8S3	-40°C to +125°C	3mmx3mm MLF [®] -8L	Pb-Free
MIC5283-5.0YML	5.0V	583	-40°C to +125°C	3mmx3mm MLF [®] -8L	Pb-Free

Pin Configuration




8-Pin ePAD SOIC MIC5283-x.xYME Fixed Voltage Output

(TOP VIEW)

3mm x 3mm MLF[®]-8L MIC5283-x.xYML Fixed Voltage Output

(TOP VIEW)

8-Pin ePAD SOIC MIC5283YME Adjustable Voltage Output

(TOP VIEW)

3mm x 3mm MLF[®]-8L MIC5283YML Adjustable Voltage Output

(TOP VIEW)

Pin Description

Pin Number				
Adjustable Output	Fixed Output	Name	Function	
1	1	VIN	Supply Voltage Input. Connect 1µF capacitor from VIN to GND.	
2, 3, 7	2, 3, 7	NC	Not internally connected. Connect NC to GND or leave unconnected.	
4	4	CPSRR	Bypass Capacitor Connection. Connect 0.1µF capacitor from CPSRR to GND.	
5	5	GND	Ground.	
6	_	FB	Feedback Connection. For external resistor divider to set V _{OUT} .	
_	6	SNS	Sense input. Connect SNS to VOUT.	
8	8	VOUT	Regulator Output. Connect 10µF capacitor from VOUT to GND.	
EP	EP	EP	Exposed Pad (ePad) for Thermal Dissipation. Connect EP to GND.	

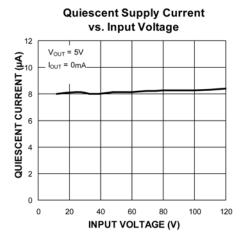
Absolute Maximum Ratings(1)

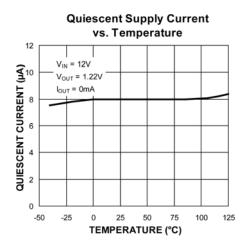
V _{IN} to GND	0.3 to +14V 0.3V to +6V +260°C 40°C ≤ T _J ≤ +125°C
HBMMM	2kV

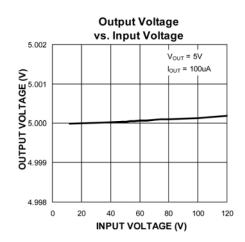
Operating Ratings⁽²⁾

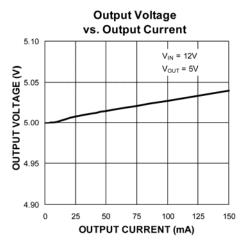
V _{IN}	+6V to +120\
V _{OUT} Adjust Range	+1.22V to +5.5\
Junction Temperature	-40° C $\leq T_{J} \leq +125^{\circ}$ C
Power Dissipation (P _D)	Internally Limited ⁽³
Junction Thermal Resistance (θ_{JA})	
8-pin ePad SOIC	
3mm x 3mm MLF [®] -8	60°C/W

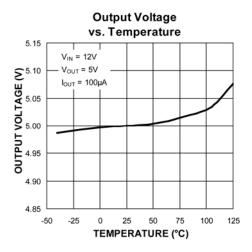
Electrical Characteristics⁽⁵⁾

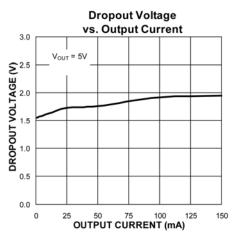

 V_{IN} = 12V, C_{IN} = 1.0 μ F, C_{PSRR} = 0.1 μ F, C_{OUT} = 10 μ F, V_{OUT} = 5.0V or 3.3V, I_{OUT} = 100 μ A, T_A = 25°C, **bold** values indicate -40°C $\leq T_J \leq +125$ °C, unless noted.

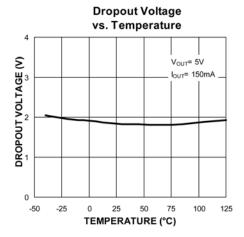

Parameter	Condition	Min.	Тур.	Max.	Units	
Power Supply Input						
Input Voltage Range			6		120	٧
Quiescent Supply Current	I _{OUT} = 0			8	14	μA
Output Voltage						
Output Voltage Assuragy	Variation from nominal \	/ _{OUT}	-3		+3	%
Output Voltage Accuracy	100μA ≤ I _{OUT} ≤ 150mA				+5	%
Line Regulation ⁽⁶⁾	10V ≤ V _{IN} ≤ 120V		-0.5	0.04	+0.5	%/V
Feedback Input (Adjustable)			•			
ED Voltage	100μA ≤ I _{OUT} ≤ 150mA		1.183	1.220	1.256	V
FB Voltage			1.159	1.220	1.281	
FB Current	V _{FB} = 1.22V			3.2		nA
Current Limit			•			
Current Limit	V _{OUT} = 0V	180	300	500	mA	
Ripple Rejection						
	I _{OUT} = 50mA	100Hz ≤ f ≤ 1kHz		70		dB
Power Supply Rejection Ratio		1kHz < f ≤ 30kHz		75		dB
		30kHz < f ≤ 100kHz		65		dB
Power Dropout Voltage		•	•	•		
Dropout Voltage I _{OUT} = 150mA				1.8	2.8	V
Thermal Protection			•			
Thermal-Shutdown Temperature	T _J rising			155		°C
Thermal-Shutdown Hysteresis			15		°C	

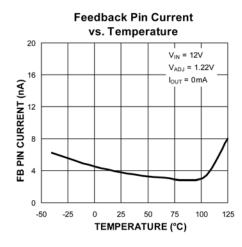

Notes:

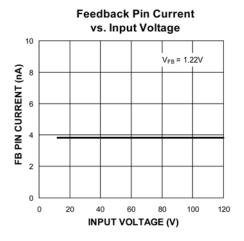

- 1. Exceeding an absolute maximum rating may damage the device.
- 2. The device is not guaranteed to function outside its operating rating.
- 3. The maximum allowable power dissipation at any T_A (ambient temperature) is P_{D(max)} = (T_{J(max)} T_A) / θ_{JA}. Exceeding the maximum allowable power dissipation results in excessive die temperature, and causes the regulator to enter thermal shutdown.
- 4. Devices are ESD sensitive; use proper handling precautions.
- 5. Specifications are for packaged products only.
- Line regulation is a percentage of V_{OUT}.

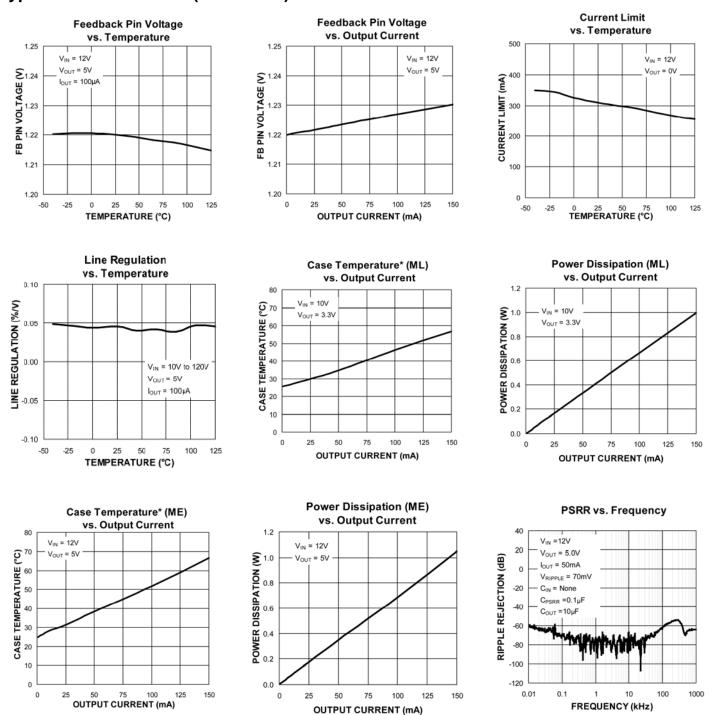

Typical Characteristics

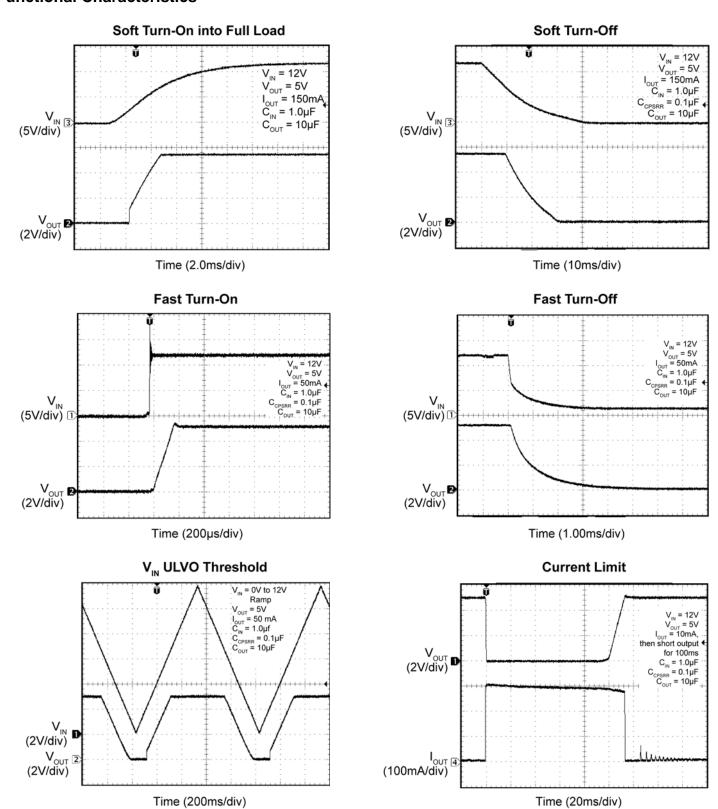




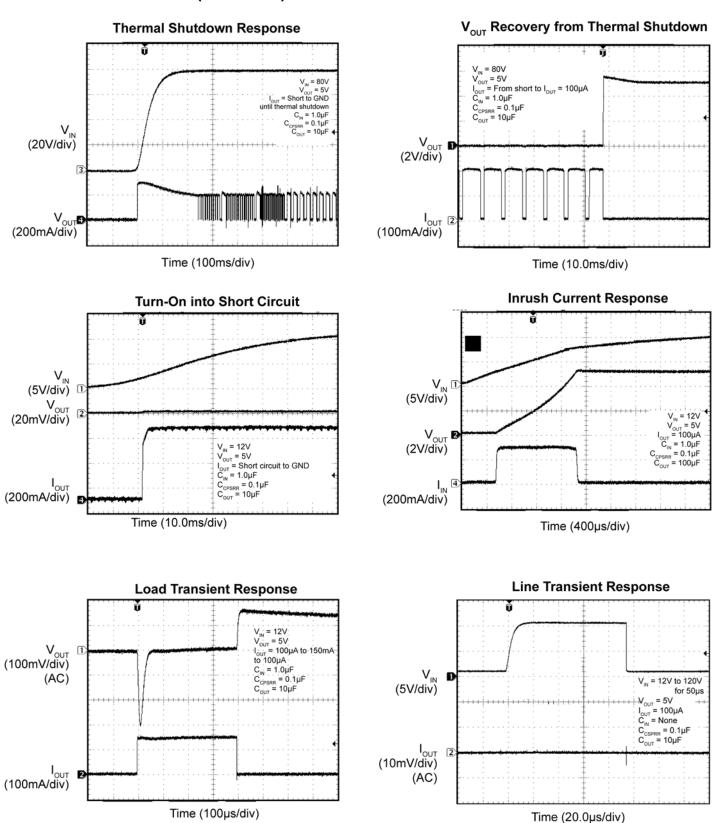








Typical Characteristics (Continued)



Case Temperature*: The temperature measurement was taken at the hottest point on the MIC5283 case mounted on a 2.25 square inch PCB at an ambient temperature of 25°C; see "Thermal Measurement" section. Actual results will depend upon the size of the PCB, ambient temperature and proximity to other heat emitting components.

Functional Characteristics

Functional Characteristics (Continued)

Detailed Description

The MIC5283 voltage regulator accepts a 6V to 120V input voltage and has an ultra-low 8µA typical quiescent current while offering an excellent line transient response and PSRR. These features make it ideal for harsh, noisy environments. All options offer 150mA of output current. The MIC5283YML and MIC5283YME offer an adjustable output voltage from 1.22V to 5.5V. The MIC5283-3.3YML and MIC5283-3.3YME offer fixed 3.3V outputs and the MIC5283-5.0YML and MIC5283-5.0YME offer fixed 5.0V outputs. The YME packaged devices feature a heat slug to more effectively remove heat from the die.

Applications Information

Thermal Protection

The MIC5283 has internal thermal shutdown to protect it from excessive heating of the die. When the junction temperature exceeds approximately +155°C, the output is disabled and the device begins to cool down. The device turns back on when the junction temperature cools by 15°C. This will result in a cycled output during continuous thermal-overload conditions.

Current Limit

The MIC5283 features output current-limit protection. The output sustains a continuous short circuit to GND without damage to the device, but thermal shutdown often results. The typical value for the current limit of the MIC5283 is 300mA.

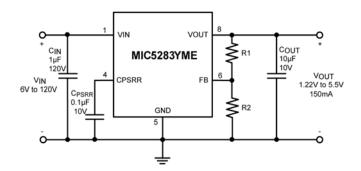
Input Capacitor

Connect a $1.0\mu F$ capacitor from VIN to GND. Micrel recommends the C5750X7R2E105M, $1.0\mu F$, 250V capacitor made by TDK. When using a different capacitor, assure that the voltage rating of the capacitor has adequate headroom to withstand any potential transient.

CPSRR Capacitor

To maintain high power supply rejection, connect a $0.1\mu F$ capacitor from CPSRR to GND. The voltage rating of the capacitor must be at least 14V.

Output Capacitor

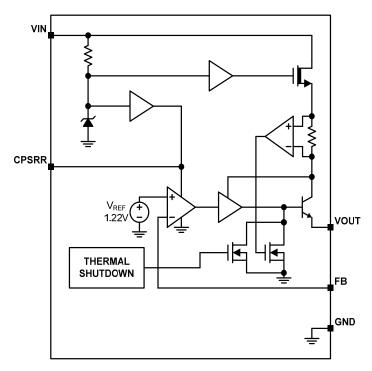

Connect a $10\mu F$ capacitor from VOUT to GND. Assure that the voltage rating of the capacitor exceeds the designed output voltage of the MIC5283.

Output Voltage Setting

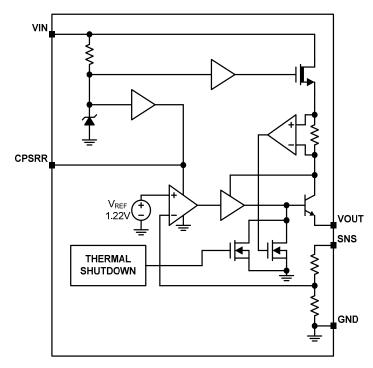
For the MIC5283YML and MIC5283YME, V_{OUT} is programmable from 1.22V to 5.5V using an external resistive divider. V_{OUT} is set using the following equation:

$$V_{OUT} = V_{REF} \times \left(\frac{R1}{R2} + 1\right)$$

where V_{REF} = 1.22V, and R1 and R2 form the feedback voltage divider from V_{OUT} to ground.

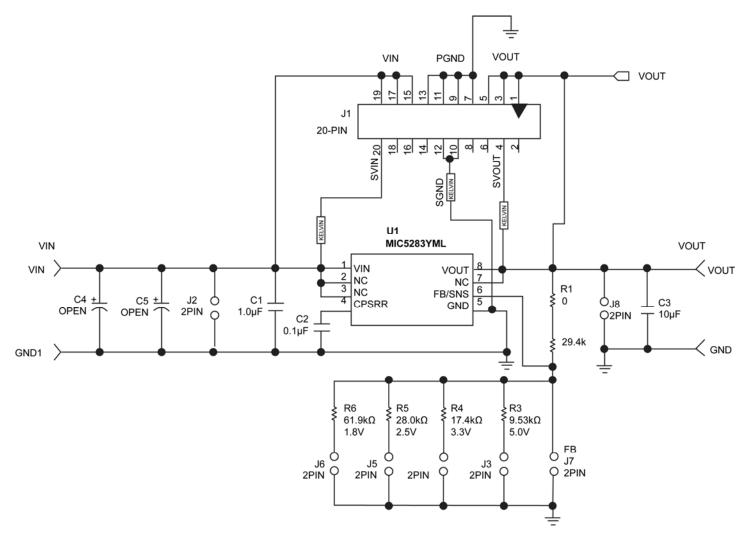


Thermal Measurements


It is always prudent to measure an IC's case temperature to make sure that it is within operating limits, but it is easy to get erroneous results. The standard thermocouple that comes with many voltage meters uses a large wire gauge that behaves like a heat-sink, resulting in artificially low case temperature measurements. Use a thermocouple of 36-gauge wire or smaller, such as the Omega (5SC-TT-K-36-36), to minimize the heat-sinking effect. Also, apply a thermal compound to maximize heat transfer between the IC and the thermocouple.

An infrared thermometer is a recommended alternative. The IR thermometer from Optris has a 1mm spot size, ideal for monitoring small surface mount packages. Also, the optional stand makes it easy to keep the beam on the IC for long periods of time.

Functional Diagram

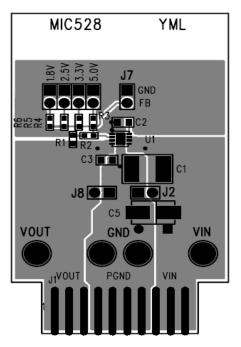


MIC5283 Adjustable Version

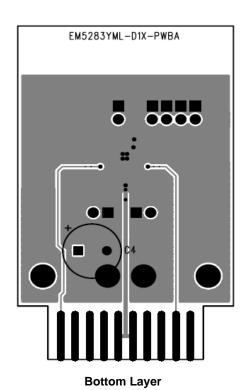
MIC5283 Fixed Version

MIC5283 Evaluation Board Schematic

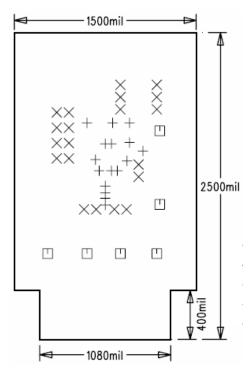
MIC5283 Evaluation Board Schematic


Bill of Materials

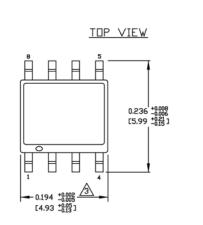
Item	Part Number	Manufacturer	Description	Qty.
C1	C5750X7R2E105M	TDK ⁽¹⁾	1.0μF, 250V, 20%, X7R capacitor (2220)	1
C2	08053C104KAT2A	AVX ⁽²⁾	0.1µF 25V 20%, X7R capacitor (0805)	1
C3	0805ZD106KAT2A	AVX ⁽²⁾	10μF, 10V, 20%, X5R, capacitor (0805)	1
R1	CRCW06030000F	Vishay/Dale ⁽³⁾	0Ω, 1% resistor, 0603	1
R2	CRCW06032942F	Vishay/Dale ⁽³⁾	29.4kΩ, 1% resistor, 0603	1
R3	CRCW06039531F	Vishay ⁽³⁾	9.53kΩ Film Resistor, Size 0603, 1%	1
R4	CRCW06031742F	Vishay ⁽³⁾	17.4kΩ Film Resistor, Size 0603, 1%	1
R5	CRCW06032802F	Vishay ⁽³⁾	28.0kΩ Film Resistor, Size 0603, 1%	1
R6	CRCW06036192F	Vishay ⁽³⁾	61.9kΩ Film Resistor, Size 0603, 1%	1
U1	MIC5283YML	Micrel ⁽⁴⁾	120V _{IN} , 150mA, Ultra-Low I _Q , High-PSRR Linear Regulator	1

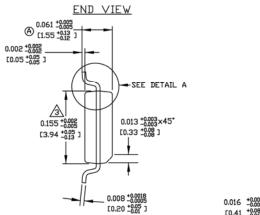

Notes:

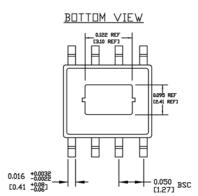
TDK: www.tdk.com.
AVX.: www.avx.com.
Vishay Tel: www.vishay.com.
Micrel, Inc.: www.micrel.com.

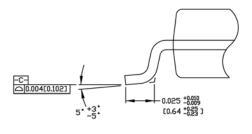

PCB Evaluation Board Layout

Top Layer


PCB Evaluation Board Layout (Continued)

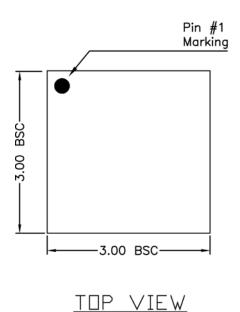


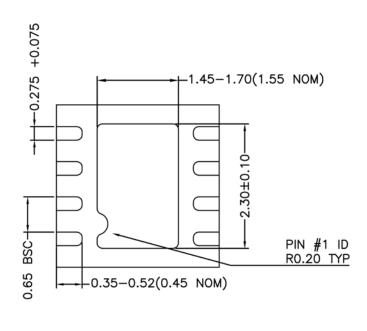

EV Board Dimensions


MIC5283 Micrel, Inc.

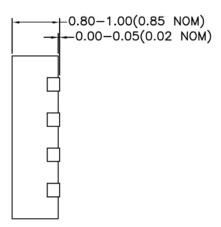
Package Information

DETAIL "A"


NOTES:

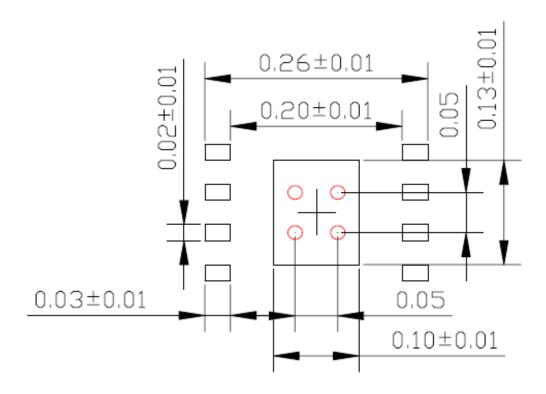

- DIMENSIONS ARE IN INCHESIMMI. CONTROLLING DIMENSION: INCHES.

DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSIONS, EITHER OF WHICH SHALL NOT EXCEED 0.006[0.15] PER SIDE.


8-Pin Exposed Pad SOIC (ME)

Package Information (Continued)

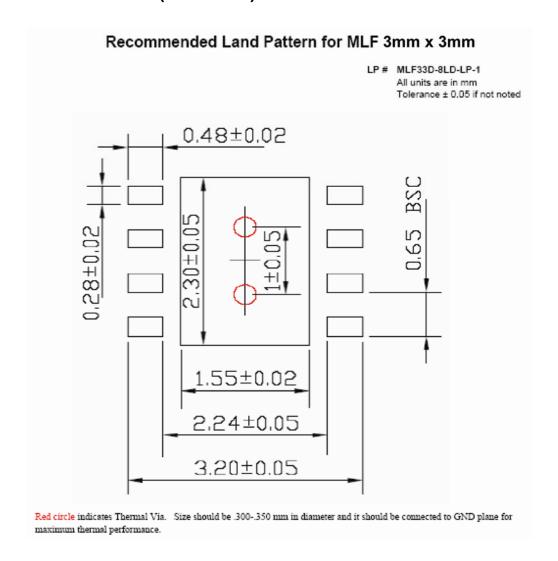
BOTTOM VIEW


SIDE VIEW

8-Pin 3mmx3mm MLF® (ML)

Recommended Land Pattern

Recommended Land Pattern for EPAD SOIC 8 Lead


LP # SOICNEP-8LD-LP-1 All units are in inches Tolerance ± 0.05 if not noted

Red circle indicates Thermal Via. Size should be .015-.017 inches in diameter and it should be connected to GND plane for maximum thermal performance.

8-Pin Exposed Pad SOIC

Recommended Land Pattern (Continued)

8-Pin 3mm x 3mm MLF®

Red circle indicates Thermal Via. Size should be .300mm – .350mm in diameter, 1.00mm pitch, and it should be connected to GND plane for maximum thermal performance.

MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com

Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this data sheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2012 Micrel, Incorporated.