HMC509* PRODUCT PAGE QUICK LINKS

Last Content Update: 12/18/2017

COMPARABLE PARTS -

View a parametric search of comparable parts.

EVALUATION KITS

• HMC509LP5 Evaluation Board.

DOCUMENTATION

Data Sheet

• HMC509 Data Sheet

REFERENCE MATERIALS -

Product Selection Guide

 RF, Microwave, and Millimeter Wave IC Selection Guide 2017

Quality Documentation

- Package/Assembly Qualification Test Report: 32L 5x5mm QFN Package (QTR: 10009 REV: 05)
- Package/Assembly Qualification Test Report: LP3, LP4, LP5 & LP5G (QTR: 2014-00145)
- Package/Assembly Qualification Test Report: Plastic Encapsulated QFN (QTR: 05006 REV: 02)
- Semiconductor Qualification Test Report: GaAs HBT-A (QTR: 2013-00228)

Technical Articles

 High Performance SiGe PLLs Pair with Low Phase Noise GaAs VCOs for Microwave Radio

DESIGN RESOURCES 🖵

- HMC509 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- · Symbols and Footprints

DISCUSSIONS

View all HMC509 EngineerZone Discussions.

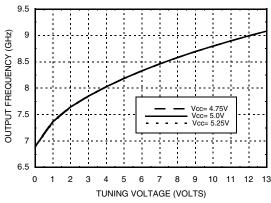
SAMPLE AND BUY 🖵

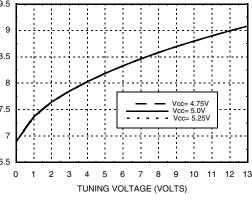
Visit the product page to see pricing options.

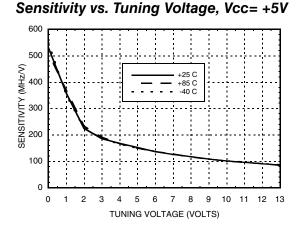
TECHNICAL SUPPORT

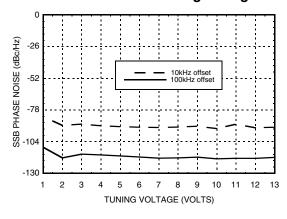
Submit a technical question or find your regional support number.

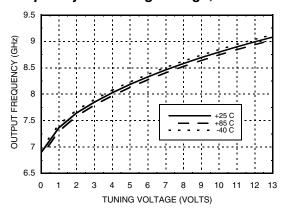
DOCUMENT FEEDBACK \Box


Submit feedback for this data sheet.

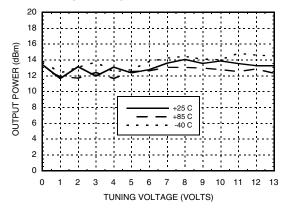

This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.



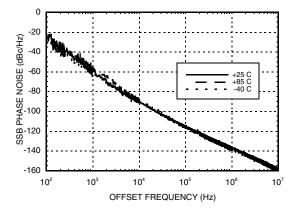

Frequency vs. Tuning Voltage, T= 25°C



SSB Phase Noise vs. Tuning Voltage

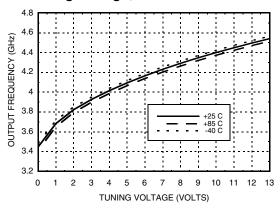


MMIC VCO w/ HALF FREQUENCY **OUTPUT 7.8 - 8.8 GHz**

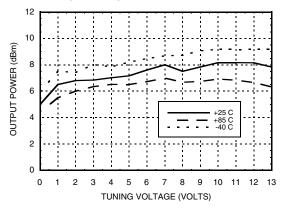

Frequency vs. Tuning Voltage, Vcc= +5V

Output Power vs. Tuning Voltage, Vcc= +5V

SSB Phase Noise @ Vtune = +5V


Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D



RFOUT/2 Frequency vs. Tuning Voltage, Vcc= +5V

MMIC VCO w/ HALF FREQUENCY OUTPUT 7.8 - 8.8 GHz

RFOUT/2 Output Power vs. Tuning Voltage, Vcc= +5V

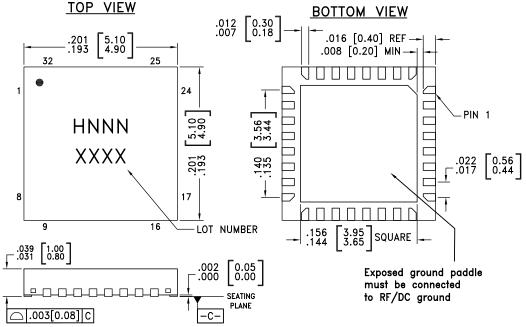
Absolute Maximum Ratings

Vcc	+5.5 Vdc
Vtune	0 to +15V
Junction Temperature	135 °C
Continuous Pdiss (T=85 °C) (derate 26.7 mW/C above 85 °C	1.34 W
Thermal Resistance (junction to ground paddle)	37.3 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
ESD Sensitivity (HBM)	Class 1A

Typical Supply Current vs. Vcc

Vcc (V)	Icc (mA)
4.75	210
5.0	250
5.25	270

Note: VCO will operate over full voltage range shown above.


ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

MMIC VCO w/ HALF FREQUENCY OUTPUT 7.8 - 8.8 GHz

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

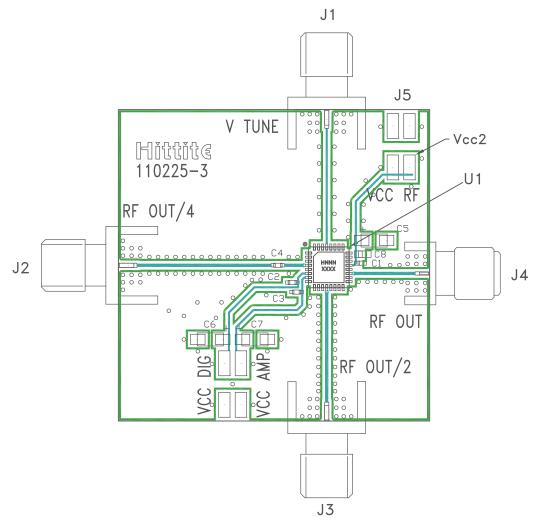
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC509LP5	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL3 [1]	H509 XXXX
HMC509LP5E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 ^[2]	<u>H509</u> XXXX

- [1] Max peak reflow temperature of 235 $^{\circ}\text{C}$
- [2] Max peak reflow temperature of 260 $^{\circ}\text{C}$
- [3] 4-Digit lot number XXXX

MMIC VCO w/ HALF FREQUENCY OUTPUT 7.8 - 8.8 GHz

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1 - 4, 6 - 10, 13 - 18, 20, 22 - 28, 30 - 32	N/C	No Connection. These pins may be connected to RF/DC ground. Performance will not be affected.	
12	RFOUT/2	Half frequency output (AC coupled).	HORFOUT/2
19	RFOUT	RF output (AC coupled).	PO RFOUT
21	Vcc	Supply Voltage, +5V	Vcco 14pF
29	VTUNE	Control Voltage Input. Modulation port bandwidth dependent on drive source impedance.	VTUNE 0
5, 11, Paddle	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	GND =

MMIC VCO w/ HALF FREQUENCY OUTPUT 7.8 - 8.8 GHz

Evaluation PCB

List of Materials for Evaluation PCB 110227 [1]

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5	2 mm DC Header
C1 - C3	100 pF Capacitor, 0402 Pkg.
C4	1,000 pF Capacitor, 0402 Pkg.
C5 - C7	2.2 µF Tantalum Capacitor
U1	HMC509LP5(E) VCO
PCB [2]	110225 Eval Board

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and backside ground paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR