

March 1995 Revised March 2001

GTLP16612 18-Bit TTL/GTLP Universal Bus Transceiver

General Description

The GTLP16612 is an 18-bit universal bus transceiver which provides TTL to GTLP signal level translation. The device is designed to provide a high speed interface between cards operating at TTL logic levels and a backplane operating at GTLP logic levels. High speed backplane operation is a direct result of GTLP's reduced output swing (<1V), reduced input threshold levels and output edge rate control which minimizes signal settling times. GTLP is a Fairchild Semiconductor derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD8-3.

Fairchild's GTLP has internal edge-rate control and is Process, Voltage, and Temperature (PVT) compensated. Its function is similar to BTL or GTL but with different driver output levels and receiver threshold. GTLP output low voltage is typically less than 0.5V, the output high is 1.5V and the receiver threshold is 1.0V.

Features

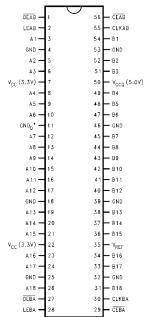
- Bidirectional interface between GTLP and TTL logic levels
- Designed with an edge rate control circuit to reduce output noise on GTLP port
- V_{REF} pin provides external supply reference voltage for receiver threshold adjustability
- Special PVT compensation circuitry to provide consistent performance over variations of process, supply voltage and temperature
- TTL compatible Driver and Control inputs
- Designed using Fairchild advanced CMOS technology
- Bushold data inputs on A port to eliminate the need for external pull-up resistors for unused inputs
- Power up/down and power off high impedance for live insertion
- 5V tolerant inputs and outputs on LVTTL port
- Open drain on GTLP to support wired-or connection
- Flow-through pinout optimizes PCB layout
- D-type flip-flop, latch and transparent data paths
- A Port outputs source/sink -32 mA/+32 mA

Ordering Code:

Order Number	Package Number	Package Description
GTLP16612MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300 Wide
GTLP16612MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

© 2001 Fairchild Semiconductor Corporation


DS012390

www.fairchildsemi.com

Pin Descriptions

Pin Names	Description
OEAB	A-to-B Output Enable (Active LOW)
OEBA	B-to-A Output Enable (Active LOW)
CEAB	A-to-B Clock Enable (Active LOW)
CEBA	B-to-A Clock Enable (Active LOW)
LEAB	A-to-B Latch Enable (Transparent HIGH)
LEBA	B-to-A Latch Enable (Transparent HIGH)
CLKAB	A-to-B Clock Pulse
CLKBA	B-to-A Clock Pulse
V_{REF}	GTLP Input Reference Voltage
A1-A18	A-to-B TTL Data Inputs or
	B-to-A 3-STATE Outputs
B1-B18	B-to-A GTLP Data Inputs or
	A-to-B Open Drain Outputs

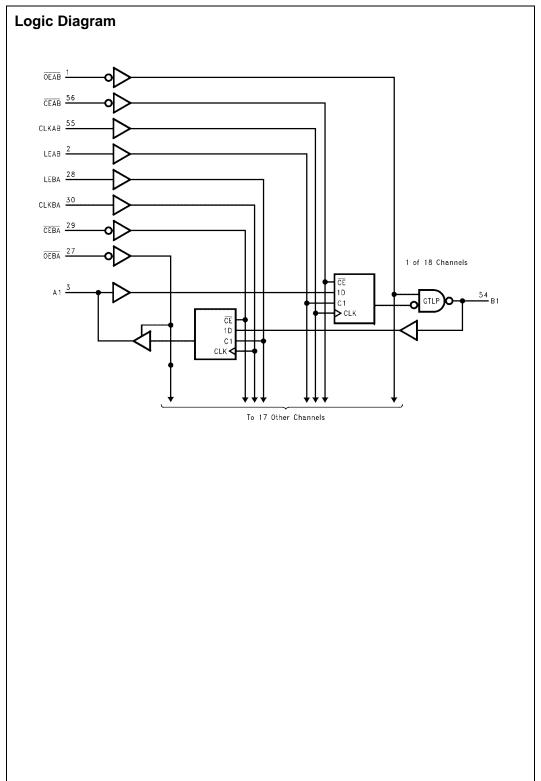
Connection Diagram

Functional Description

The GTLP16612 combines a universal transceiver function with a TTL to GTLP translation. The A Port and control pins operate at LVTTL or 5V TTL levels while the B Port operates at GTLP levels. The transceiver logic includes D-type latches and D-type flip-flops to allow data flow in transparent, latched and clock mode.

The functional operation is described in the truth table below.

Truth Table


(Note 1)

Inputs					Output	Mode
CEAB	OEAB	LEAB	CLKAB	Α	В	
Х	Н	Х	Х	Χ	Z	Latched
L	L	L	Н	Х	B ₀ (Note 2)	storage
L	L	L	L	Х	B ₀ (Note 3)	of A data
Х	L	Н	Х	L	L	Transparent
Х	L	Н	X	Н	Н	
L	L	L	1	Г	L	Clocked storage
L	L	L	\uparrow	Н	Н	of A data
Н	L	L	Х	Χ	B ₀ (Note 3)	Clock inhibit

Note 1: A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{\text{OEBA}}$, LEBA, CLKBA, and $\overline{\text{CEBA}}$.

Note 2: Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

Note 3: Output level before the indicated steady-state input conditions were established.

Absolute Maximum Ratings(Note 4)

Recommended Operating Conditions (Note 6)

 $\label{eq:supply Voltage VCC} \begin{array}{ll} \text{Supply Voltage (V}_{\text{CC}}, \text{V}_{\text{CCQ}}) & -0.5 \text{V to } +7.0 \text{V} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to } +7.0 \text{V} \\ \end{array}$

DC Output Voltage (V_O)

Outputs 3-STATE -0.5V to +7.0V Outputs Active (Note 5) -0.5V to V_{CC} + 0.5V

DC Output Sink Current into

A Port I_{OL} 64 mA

DC Output Source Current from

A Port I_{OH} –64 mA

DC Output Sink Current

into B Port in the LOW State, I_{OL} 80 mA DC Input Diode Current (I_{IK})

 $V_{\rm I}$ < 0V -50 mA

DC Output Diode Current (I_{OK})

 $\begin{array}{ccc} V_{O} < 0V & -50 \text{ mA} \\ V_{O} > V_{CC} & +50 \text{ mA} \\ \text{Storage Temperature (T}_{STG}) & -65^{\circ}\text{C to} +150^{\circ}\text{C} \end{array}$

ESD Performance >2000V

Supply Voltage $V_{\rm CC}$

 $\begin{array}{c} \rm V_{CC} & 3.15V \ to \ 3.45V \\ \rm V_{CCQ} & 4.75V \ to \ 5.25V \\ \rm Bus \ Termination \ Voltage \ (V_{TT}) & 1.35V \ to \ 1.65V \\ \end{array}$

Input Voltage (V_I)

on A Port and Control Pins 0.0V to 5.5V

HIGH Level Output Current (I_{OH})

A Port –32 mA

LOW Level Output Current (I_{OL})

A Port +32 mA B Port +34 mA

 $\label{eq:continuity} Operating Temperature (T_A) \\ -40^{\circ}\text{C to } +85^{\circ}\text{C}$ Note 4: The Absolute Maximum Ratings are those values beyond which

Max

the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristic tables are not guaranteed at the absolute maximum rating. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 5: $I_{\rm O}$ Absolute Maximum Rating must be observed.

Note 6: Unused inputs must be held HIGH or LOW.

DC Electrical Characteristics

Over Recommended Operating Free-Air Temperature Range, $V_{\mbox{REF}} = 1.0V$ (Unless Otherwise Noted).

	Symbol	Test Condit	tions	Min	(Note 7)	Max	Units
V _{IH}	B Port			V _{REF} +0.1		V _{TT}	V
	Others			2.0			V
V _{IL}	B Port			0.0		V _{REF} -0.1	V
	Others					0.8	Ť
V _{REF}					1.0		V
V _{IK}		$V_{CC} = 3.15V,$	I _I = -18 mA			-1.2	V
		V _{CCQ} = 4.75V	11 - 10 1111			-1.2	V
V _{OH}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	$I_{OH} = -100 \mu A$	V _{CC} - 0.2			
		V _{CC} = 3.15V	$I_{OH} = -8 \text{ mA}$	2.4			V
		V _{CCQ} = 4.75V	$I_{OH} = -32 \text{ mA}$	2.0			Ī
V _{OL}	A Port	V _{CC} , V _{CCQ} = Min to Max (Note 8)	I _{OL} = 100 μA			0.2	
		V _{CC} = 3.15V	I _{OL} = 32 mA			0.5	V
		V _{CCQ} = 4.75V					
	B Port	$V_{CC} = 3.15 V V_{CCQ} = 4.75 V$	I _{OL} = 34 mA			0.65	V
I _I	Control Pins	V _{CC} , V _{CCQ} = 0 or Max	V _I = 5.5V or 0V			±10	μΑ
	A Port	V _{CC} = 3.45V	$V_{I} = 5.5V$			20	
		V _{CCQ} = 5.25V	$V_I = V_{CC}$			1	μΑ
			$V_I = 0$			-30	Ī
	B Port	V _{CC} = 3.45V	$V_I = V_{CCQ}$			5	
		V _{CCQ} = 5.25V	$V_I = 0$			-5	μΑ
I _{OFF}	A Port	$V_{CC} = V_{CCQ} = 0$	V_I or $V_O = 0$ to 4.5V			100	μΑ
I _{I(hold)}	A Port	$V_{CC} = 3.15V,$	$V_{I} = 0.8V$	75			μА
		V _{CCQ} = 4.75V	$V_{I} = 2.0V$	-20			μΑ
I _{OZH}	A Port	$V_{CC} = 3.45V,$	V _O = 3.45V			1	
	B Port	V _{CCQ} = 5.25V	$V_0 = 1.5V$			5	μΑ
I _{OZL}	A Port	V _{CC} = 3.45V,	V _O = 0			-20	
	B Port	V _{CCO} = 5.25V	V _O = 0.65V			-10	μΑ

DC Electrical Characteristics (Continued)

Symbol		Test Conditions		Min	Typ (Note 7)	Max	Units
I _{CCQ}	A or B	$V_{CC} = 3.45V,$	Outputs HIGH		30	40	
(V _{CCQ})	Ports	$V_{CCQ} = 5.25V$,	Outputs LOW		30	40	mA
		$I_O = 0$,					IIIA
		$V_I = V_{CCQ}$ or GND	Outputs Disabled		30	40	
I _{CC}	A or B	$V_{CC} = 3.45V,$	Outputs HIGH		0	1	
(V _{CC})	Ports	$V_{CCQ} = 5.25V$,	Outputs LOW		0	1	mA
		$I_O = 0$,					IIIA
		$V_I = V_{CCQ}$ or GND	Outputs Disabled		0	1	
ΔI_{CC}	A Port and	$V_{CC} = 3.45V,$	One Input at 2.7V		0	1	
(Note 9)	Control Pins	$V_{CCQ} = 5.25V$,					mA
		A or Control Inputs at					mA
		V _{CC} or GND					
C _{IN}	Control Pins		$V_I = V_{CCQ}$ or 0		8		
C _{I/O}	A Port		$V_I = V_{CCQ}$ or 0		9		pF
C _{I/O}	B Port		$V_I = V_{CCQ}$ or 0		6		

Note 7: All typical values are at $V_{CC} = 3.3V$, $V_{CCQ} = 5.0V$, and $T_A = 25^{\circ}C$.

AC Operating Requirements

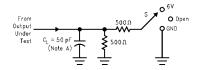
Over recommended ranges of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted).

Symbol			Min	Max	Unit
f _{MAX}	Maximum Clock Frequency		150		MHz
t _W	Pulse Duration	LEAB or LEBA HIGH	3.0		
		CLKAB or CLKBA HIGH or LOW	3.2		ns
t _S	Setup Time	A before CLKAB↑	0.5		
		B before CLKBA↑	3.1		
		A before LEAB↓	1.3		
		B before LEBA↓	3.7		ns
		CEAB before CLKAB↑	0.4		
		CEBA before CLKBA↑	1.0		
t _H	Hold Time	A after CLKAB↑	1.5		
		B after CLKBA↑	0.0		
		A after LEAB↓	0.5		
		B after LEBA↓	0.0		ns
		CEAB after CLKAB↑	1.5		
		CEBA after CLKBA↑	1.7		

Note 8: For conditions shown as Min or Max, use the appropriate value specified under recommended operating conditions.

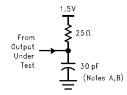
Note 9: This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

AC Electrical Characteristics

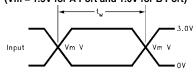

Over recommended range of supply voltage and operating free-air temperature, $V_{REF} = 1.0V$ (unless otherwise noted). $C_L = 30$ pF for B Port and $C_L = 50$ pF for A Port.

Symbol	From	То	Min	Тур	Max	Unit	
	(Input)	(Output)		(Note 10)			
t _{PLH}	A	В	1.0	4.3	6.5		
t _{PHL}			1.0	5.0	8.2	ns	
PLH	LEAB	В	1.8	4.5	6.7		
PHL			1.5	5.3	8.6	ns	
t _{PLH}	CLKAB	В	1.8	4.6	6.7		
t _{PHL}			1.5	5.4	8.7	ns	
t _{PLH}	OEAB	В	1.6	4.4	6.2		
t _{PHL}			1.3	6.1	9.8	ns	
t _{RISE}	Transition time, B o	utputs (20% to 80%)		2.6		ns	
t _{FALL}	Transition time, B o	utputs (20% to 80%)		2.6			
t _{PLH}	В	А	2.0	5.6	8.2	ns	
PHL			1.4	5.0	7.2	115	
t _{PLH}	LEBA	А	2.1	4.2	6.3	ns	
t _{PHL}			1.9	3.3	5.0	115	
t _{PLH}	CLKBA	CLKBA A	2.3	4.4	6.8	ns	
t _{PHL}			2.2	3.5	5.2	115	
t _{PZH} , t _{PZL}	OEBA	А	1.5	5.0	6.2	ns	
t _{PHZ} , t _{PLZ}			1.9	3.9	7.9	115	

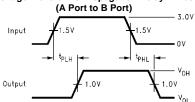
Note 10: All typical values are at $V_{CC} = 3.3 V$, $V_{CCQ} = 5.0 V$, and $T_A = 25 ^{\circ} C$.


Test Circuits and Timing Waveforms

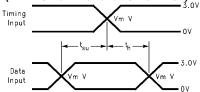
Test Circuit for A Outputs

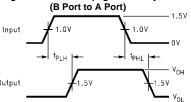

C_L includes probes and jig capacitance.

Test Circuit for B Outputs

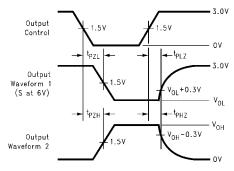


 ${
m C_L}$ includes probes and jig capacitance. For B Port outputs, ${
m C_L}=30$ pF is used for worst case edge rate.

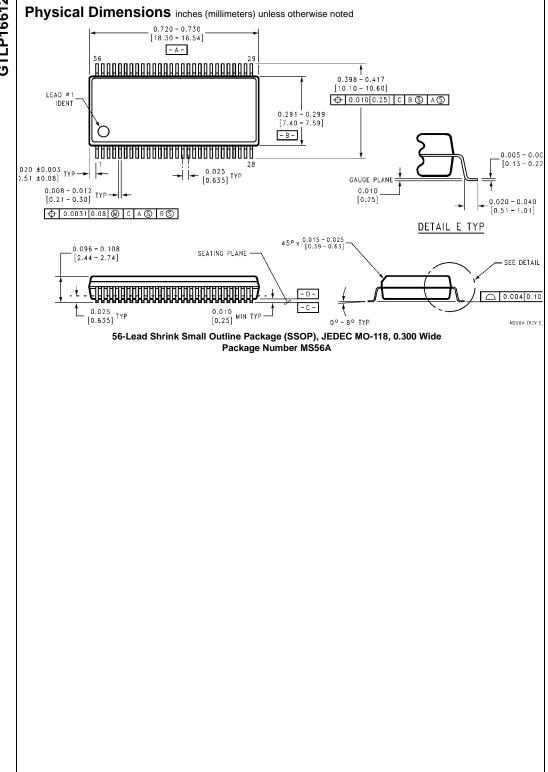

Voltage Waveforms Pulse Duration (Vm = 1.5V for A Port and 1.0V for B Port)

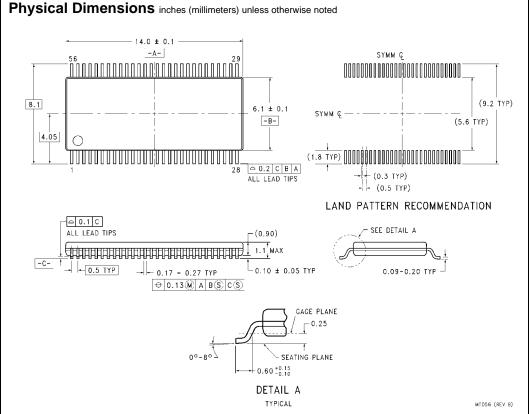

Voltage Waveforms Propagation Delay Times

Voltage Waveforms Setup and Hold Times (Vm = 1.5V for A Port and 1.0V for B Port) 3.0V



Voltage Waveforms Propagation Delay Times




All input pulses have the following characteristics: frequency = 10 MHz, $t_r = t_f = 2$ ns, $Z_O = 50\Omega$. The outputs are measured one at a time with one transition per measurement.

Voltage Waveforms Enable and Disable Times (A Port)

Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is HIGH except when disabled by the output control. All input pulses have the following characteristics: frequency = 10 MHz, $t_r = t_f = 2$ ns, $Z_O = 50\Omega$. The outputs are measured one at a time with one transition per measurement.

56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD56

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com