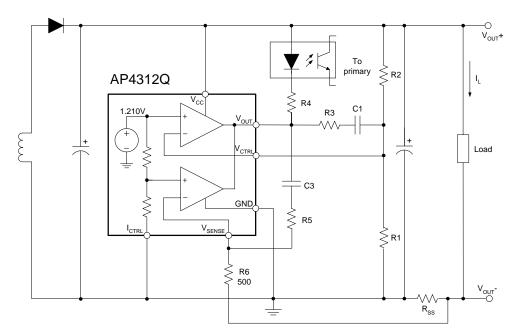

Typical Applications Circuit

$$V_{OUT} = V_{REF} \times \frac{R1 + R2}{R1}$$

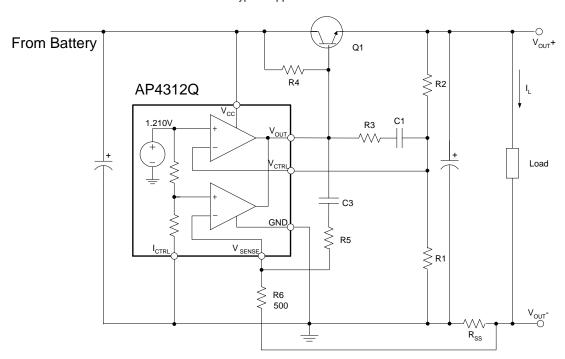
$$CurrentLimit = \frac{V_{SENSE}}{R_{SS}}$$

Typical Application 1


$$V_{OUT} = [V_{REF} + (I_L \times R_{SS})] \times \frac{R1 + R2}{R1} - (I_L \times R_{SS})$$

$$CurrentLimit = \frac{V_{SENSE}}{R_{SS}}$$

Typical Application 2


Typical Applications Circuit (Cont.)

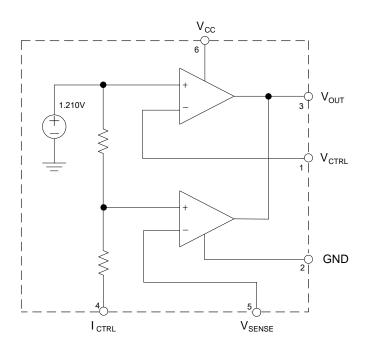
$$V_{OUT} = V_{REF} \times \frac{R1 + R2}{R1} - (I_L \times R_{SS})$$

$$CurrentLimit = \frac{V_{SENSE} \times V_{REF}}{\left(V_{SENSE} + V_{REF}\right) \times R_{SS}}$$

Typical Application 3

Typical Application 4

$$V_{OUT} = V_{REF} \times \frac{R1 + R2}{R1} - (I_L \times R_{SS})$$


$$CurrentLimit = \frac{V_{SENSE} \times V_{REF}}{\left(V_{SENSE} + V_{REF}\right) \times R_{SS}}$$

Pin Descriptions

Pin Number	Pin Name	Function	
1	V _{CTRL}	Input pin of the voltage control loop	
2	GND	Ground	
3	V _{OUT}	Output pin. Sinking current only	
4	I _{CTRL}	Input pin of the current control loop	
5	V _{SENSE}	Input pin of the current control loop	
6	V _{cc}	Power Supply	

Functional Block Diagram

Absolute Maximum Ratings (Note 4)

Symbol	Parameter	Rating	Unit
V _{CC}	Power Supply Voltage	20	V
V_{IN}	Input Voltage	-0.3 to V _{CC}	V
T_J	Junction Temperature	+150	°C
T_{STG}	Storage Temperature	-65 to +150	°C
T_{LEAD}	Lead Temperature (Soldering, 5sec)	+260	°C
θ_{JA}	Thermal Resistance (Junction to Ambient)	250	°C/W

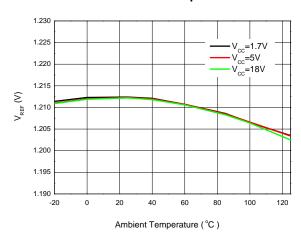
Note 4: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

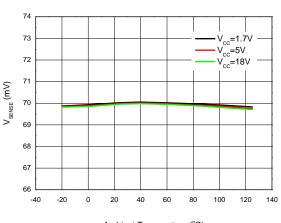
Symbol	Parameter	Min	Max	Unit
V _{CC}	Power Supply Voltage	1.7	18	V

$\textbf{Electrical Characteristics} \ (@V_{CC}=5V, T_A=+25^{\circ}C, unless \ otherwise \ specified.)$

Symbol	Parameters	Conditions	Min	Тур	Max	Unit	
TOTAL CURREN	TOTAL CURRENT CONSUMPTION						
	Total Supply Current Not Including the	T _A =+25°C	_	180	_	- μΑ	
I _{cc}	Output Sinking Current	-40°C <t<sub>A<+105°C</t<sub>	_	_	300		
VOLTAGE CONT	ROL LOOP						
	Transconductance of Voltage Control	T _A =+25°C	1	3.5	-	mA/mV	
Gmv	Loop Op-Amp (Sink Current Only)	-40°C <t<sub>A<+105°C</t<sub>	-	2.5	-		
V		T _A =+25°C	1.204	1.21	1.216	V	
V_{REF}	Voltage Control Loop Reference	-40°C <t<sub>A<+105°C</t<sub>	1.186		1.234		
	Input Bias Current (V _{CTRL})	T _A =+25°C	-	50	-	nA	
I _{IBV}		-40°C <t<sub>A<+105°C</t<sub>	_	100	_ n/	IIA	
CURRENT CONT	ROL LOOP						
0 :	Transconductance of Current Control	T _A =+25°C	1.5	7	-	A () (
Gmi	Loop Op-Amp (Sink Current Only)	-40°C <t<sub>A<+105°C</t<sub>	1.5	7	_	mA/mV	
.,		T _A =+25°C	67.9	70	72.1	- mV	
V_{SENSE}	Current Control Loop Reference	-40°C <t<sub>A<+105°C</t<sub>	66		74		
	2	T _A =+25°C	_	18	-	μА	
I _{IBI}	Current Out of Pin I _{CTRL} at V _{SENSE}	-40°C <t<sub>A<+105°C</t<sub>	-	35	-		
OUTPUT STAGE	OUTPUT STAGE						
V	Low Output Voltage Level	T _A =+25°C, I _{SINK} =2mA	-	100	-	mV	
V _{OL}		-40°C <t<sub>A<+105°C, I_{SINK}=2mA</t<sub>	-	100	-		
-	Output Short Circuit Current.	T _A =+25°C	-	27	50	50 _ mA	
l _{os}	Output to V _{CC} . Sink Current Only	-40°C <t<sub>A<+105°C</t<sub>	-	35	_		

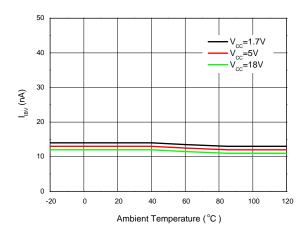

Thermal Impedance

Symbol	Parameter	Value	Unit	
θ _{JC}	Thermal Resistance (Junction to Case)	84	°C/W	

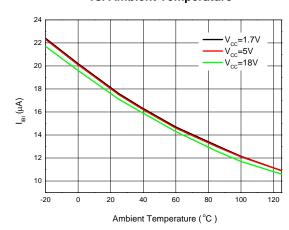


Performance Characteristics

Voltage Control Loop Reference vs. Ambient Temperature

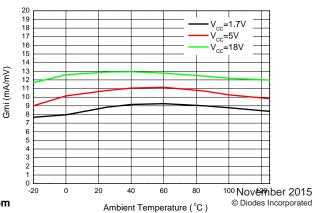


Current Control Loop Reference vs. Ambient Temperature



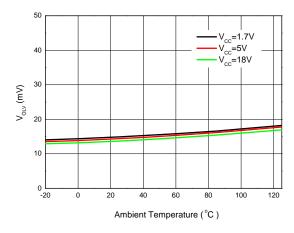
Ambient Temperature (°C)


Input Bias Current (VCTRL) vs. Ambient Temperature

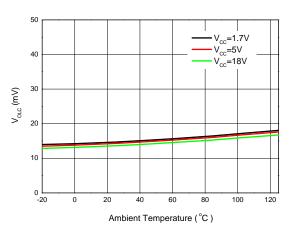

Current Out of Pin ICTRL at VSENSE vs. Ambient Temperature

Transconductance of Voltage Control Loop Op-Amp vs. Ambient Temperature

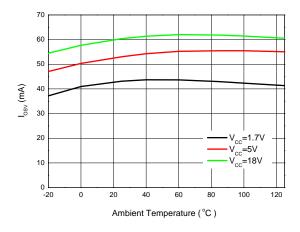
Transconductance of Current Control Loop Op-Amp vs. Ambient Temperature

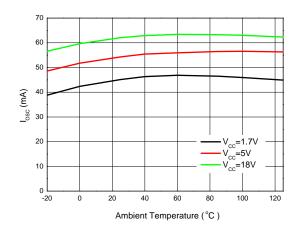

6 of 11 www.diodes.com

Downloaded from Arrow.com.

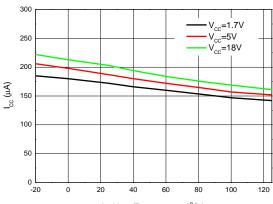


Performance Characteristics (Cont.)

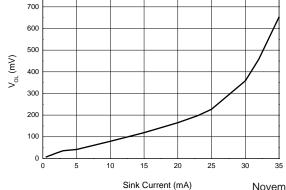

Low Output Level of Voltage Control Loop Op-Amp vs. Ambient Temperature


Low Output Level of Current Control Loop Op-Amp vs. Ambient Temperature

Output Short Circuit Current of Voltage Control Loop Op-Amp vs. Ambient Temperature

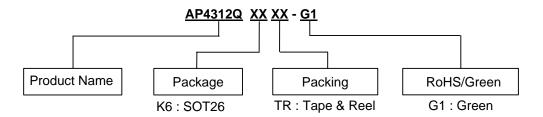


Output Short Circuit Current of Current Control Loop Op-Amp vs. Ambient Temperature

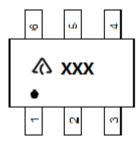

Low Output Voltage Level vs. Sink Current

Total Supply Current Not Including the Output Sinking Current vs. Ambient Temperature

AP4312Q Ambient Temperature (°C)


Document number: DS37444 Rev. 4 - 2

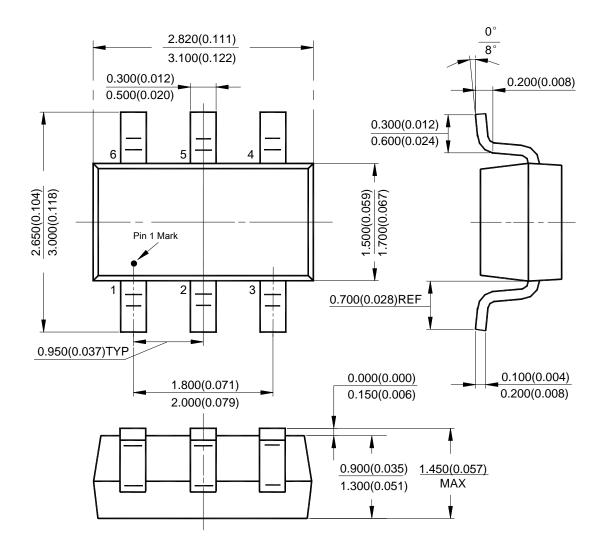
7 of 11 www.diodes.com


Ordering Information

Package	Part Number	Marking ID	Packing	
SOT26	AP4312QK6TR-G1	GKD	3000/Tape & Reel	

Marking Information

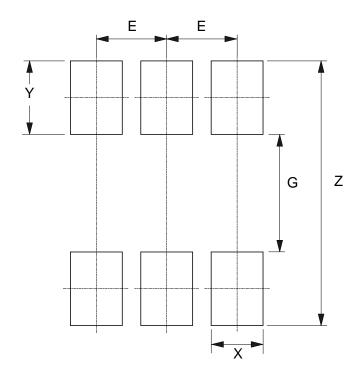
(Top View)


A: Logo

XXX: Marking ID (See Ordering Information)

Package Outline Dimensions (All dimensions in mm(inch).)

(1) Package Type: SOT26



Downloaded from **Arrow.com**.

Suggested Pad Layout

(1) Package Type: SOT26

Dimensions	Z	G	X	Y	E
	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)	(mm)/(inch)
Value	3.600/0.142	1.600/0.063	0.700/0.028	1.000/0.039	0.950/0.037

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2015, Diodes Incorporated

www.diodes.com