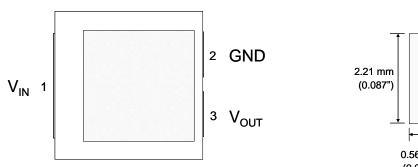
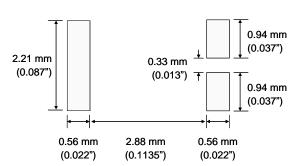


PRODUCT: ZEN132V075A48LS

DOCUMENT: SCD27364 REV LETTER: D

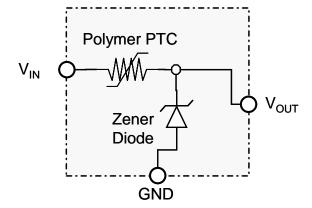

REV DATE: JULY 26, 2016


PAGE NO.: 2 OF 8

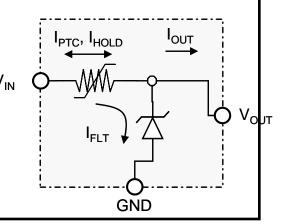
CONFIGURATION INFORMATION

Pin Configuration (Top View)

Pad Dimensions



PIN DESCRIPTION


Pin Number	Pin Name	Pin Function
1	V_{IN}	V _{IN} . Protected input to Zener diode.
2	GND	GND
3	Vouт	V _{out} . Zener regulated voltage output

BLOCK DIAGRAM

DEFINITION of TERMS

I _{PTC}	Current flowing through the PTC portion of the circuit				
I _{FLT}	RMS fault current flowing through the diode				
lout	Current flowing out the V _{OUT} pin of the device				
Trip Event	A condition where the PTC transitions to a				
	high resistance state, thereby significantly				
	limiting IPTC and related currents.				
Trip	Time the PTC portion of the device remains in				
Endurance	a high resistance state.				

PolyZen

Polymer Enhanced Zener Diode Micro-Assemblies

PRODUCT: ZEN132V075A48LS

DOCUMENT: SCD27364 REV LETTER: D

REV DATE: JULY 26, 2016

PAGE NO.: 3 OF 8

GENERAL SPECIFICATIONS

-40° to +85°C Operating Temperature Storage Temperature -40° to +85°C

ELECTRICAL CHARACTERISTICS^{1-3, 11} (Typical unless otherwise specified)

	V _z ⁴ (V)		. 4	Leakage Current			D4 7	_	Max ⁸ I _{FLT}		Max ⁹	Tripped Power Dissipation ¹⁰		
Min	Тур	Max	(A)	(A) @ 20°C	Test Voltage (V)	Max Current (mA)	R _{Typ} ⁶ (Ohms)	R1 _{Max} ⁷ (Ohms)	V _{INT} Max (V)	Test Current (A)	I _{FLT} Max (A)	Test Voltage (V)	Power (W)	Test Voltage (V)
13.20	13.40	13.65	0.1	0.75	13.15	5.0	0.28	0.45	48	3	+2 -40	+48 -16	0.8	48

Electrical characteristics determined at 25°C unless otherwise specified. Note 1:

Note 2: This device is intended for limited fault protection. Repeated trip events or extended trip endurance can degrade the device and may affect performance to specifications. Performance impact will depend on multiple factors including, but not limited to, voltage, trip current, trip duration, trip cycles, and circuit design. For details or ratings specific to your application contact Littelfuse Circuit Protection directly.

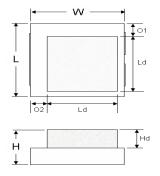
Specifications developed using 1.0 ounce 0.045" wide copper traces on dedicated FR4 test boards. Note 3: Performance in your application may vary.

Note 4: I_{zt} is the current at which V_z is measured ($V_z = V_{OUT}$). Additional V_z values are available on request.

I_{HOLD}: Maximum steady state I_{PTC} (current entering or exiting the V_{IN} pin of the device) that will not generate a Note 5: trip event at the specified temperature. Specification assumes IFLT (current flowing through the Zener diode) is sufficiently low so as to prevent the diode from acting as a heat source. Testing is conducted with an "open" Zener.

R Typ: Resistance between V_{IN} and V_{OUT} pins during normal operation at room temperature. Note 6:

R_{1Max}: The maximum resistance between V_{IN} and V_{OUT} pins at room temperature, one hour after 1st trip or after Note 7: reflow soldering.


VINT Max: VINT Max relates to the voltage across the PPTC portion of the PolyZen device (VIN-VOLT). VINT Max is Note 8: defined as the voltage (V_{IN}-V_{OUT}) at which typical qualification devices (98% devices, 95% confidence) survived at least 100 trip cycles and 24 hours' trip endurance at the specified voltage (V_{IN}-V_{OUT}) and current (I_{PTC}). V_{INT} Max testing is conducted using a "shorted" load (Vout = 0 V). VINT Max is a survivability rating, not a performance rating.

IFLT Max: IFLT Max relates to the stead state current flowing through the diode portion of the PolyZen device in a Note 9: fault condition, prior to a trip event. IFLT Max is defined as the current at which typical qualification devices (12 parts per lot from 3 lots) survived 100 test cycles. RMS fault currents above I_{FLT} Max may permanently damage the diode portion of the PolyZen device. Testing is conducted with NO load connected to Vout, such that Iout = 0. "Test voltage" is defined as the voltage between VIN to GND and includes the PolyZen Diode drop. Specification is dependent on the direction of current flow through the diode. IFLT Max is a survivability rating, not a performance rating.

The power dissipated by the device when in the "tripped" state, as measured on Littelfuse test boards (see note Note 10: 3).

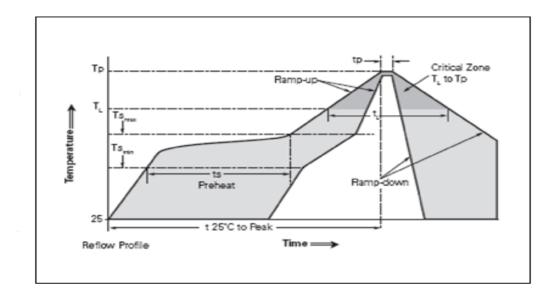
Note 11: Specifications based on limited qualification data and subject to change.

MECHANICAL DIMMENSIONS

		Min	Typical	Max
Length	ı	3.85 mm	4 mm	4.15 mm
Lengui		(0.152")	(0.16")	(0.163")
Width	W	3.85 mm	4 mm	4.15 mm
VVIGUT	VV	(0.152")	(0.16")	(0.163")
Height	Н	1.4mm	1.7 mm	2.0 mm
rieignt	'''	(0.055")	(0.067")	(0.081")
Length	Ld	_	3.0 mm	_
Diode	Lu		(0.118")	
Height	Hd	_	1.0 mm	_
Diode	110		(0.039")	
Offset	01	_	0.6 mm	_
3.1001	J 1		(0.024")	
Offset	O2	_	0.7 mm	_
Oliset	02		(0.028")	

© 2016 Littelfuse, Inc. Specifications are subject to change without notice. Revised July 26, 2016

PRODUCT: ZEN132V075A48LS


DOCUMENT: SCD27364 REV LETTER: D

REV DATE: JULY 26, 2016

PAGE NO.: 4 OF 8

SOLDER REFLOW RECOMMENDATIONS

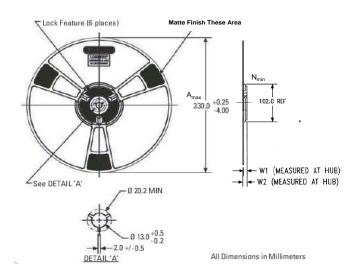
Classification Reflow Profiles					
Profile Feature	Pb-Free Assembly				
Average Ramp-Up Rate (Tsmax to Tp)	3° C/second max.				
Preheat					
Temperature Min (Tsmin)	150 °C				
Temperature Max (Tsmax)	200 °C				
Time (tsmin to tsmax)	60-180 seconds				
Time maintained above:					
Temperature (TL)	217 °C				
• Time (tL)	60-150 seconds				

PACKAGING

Packaging	Tape & Reel	Standard Box
ZENXXXVXXXAXXLS	3,000	15,000

REEL DIMENSIONS

$A_{max} = 330$
$N_{min} = 102$
$W_1 = 8.4$
$W_2 = 11.1$



PRODUCT: ZEN132V075A48LS


DOCUMENT: SCD27364 REV LETTER: D

REV DATE: JULY 26, 2016

PAGE NO.: 5 OF 8

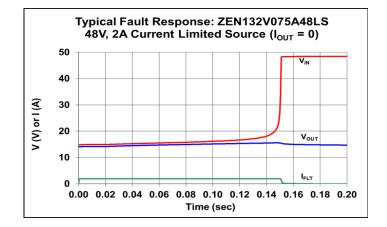
TAPED COMPONENT DIMENSIONS

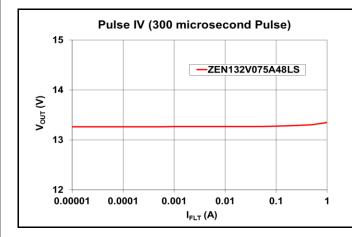
NOTES:

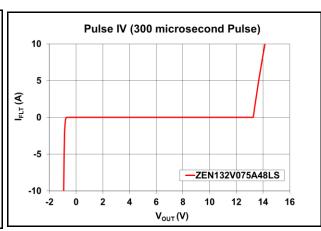
1. 10 SPROCKET HOLE PITCH CLMULATIVE TOLERANCE ±0.2 Aa = 4.35

Ba = 4.35 2. CAMBER IN COMPLIANCE VITH EIA 481

Ka = 2.303. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POOKET, NOT POCKET HOLE


PRODUCT: ZEN132V075A48LS

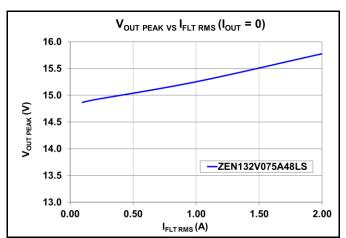

DOCUMENT: SCD27364 REV LETTER: D


REV DATE: JULY 26, 2016

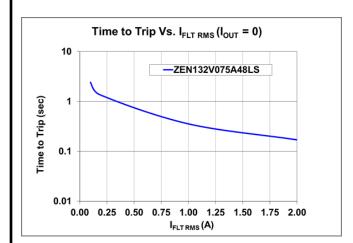
PAGE NO.: 6 OF 8

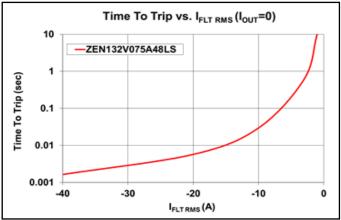
TYPICAL CHARACTERISTICS

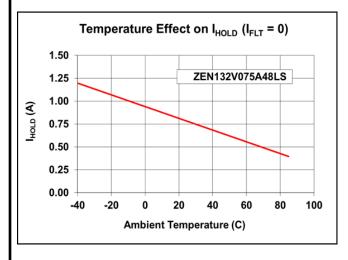
PolyZen

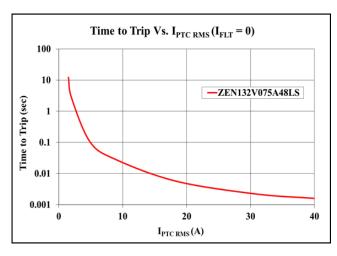

Polymer Enhanced Zener Diode Micro-Assemblies

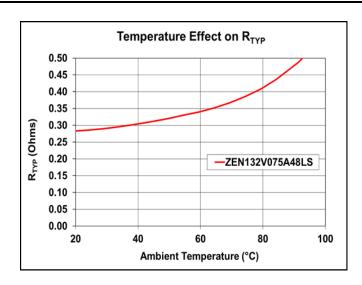
PRODUCT: ZEN132V075A48LS


DOCUMENT : SCD27364 REV LETTER : D


REV DATE: JULY 26, 2016


PAGE NO.: 7 OF 8





PRODUCT: ZEN132V075A48LS

DOCUMENT: SCD27364 REV LETTER: D

REV DATE: JULY 26, 2016

PAGE NO.: 8 OF 8

MATERIALS INFORMATION

ROHS Compliant

Directive 2002/95/EC Compliant

ELV Compliant

Directive 2000/53/EC Compliant

Halogen Free*

* Halogen Free refers to: Br≤900ppm, Cl≤900ppm, Br+Cl≤1500ppm.

PRODUCT: ZEN132V075A48LS

DOCUMENT : SCD27364 REV LETTER : D

REV DATE: JULY 26, 2016

PAGE NO.: 9 OF 8

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.