
Figure 2. Block Diagram

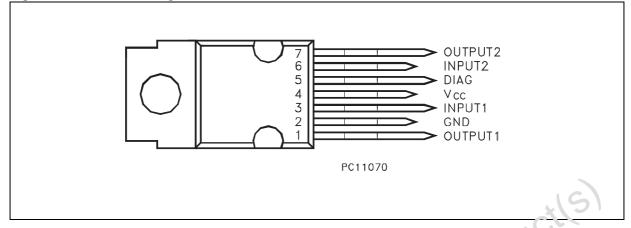
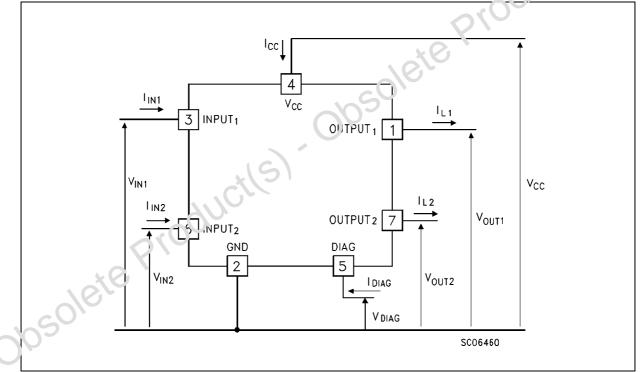


Table 3. Absolute Maximum Ratings


Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain-Source Brack town Voltage	40	V
I _{OUT}	Output Cu rent (cont.) at T _c = 85 °C	14	A
I _{OUT} (RMS)	RMS Cutput Current at T _c = 85 °C	14	A
I _R	F. warse Output Current at T _c = 85 °C	-14	A
I:N Input Current		±10	mA
- /cc	Reverse Supply Voltage	-4	V
ISTAT	Status Current	±10	mA
V _{ESD}	Electrostatic Discharge (1.5 kΩ; 100 pF)	2000	V
P _{tot}	Power Dissipation at $T_c = 25 \ ^{\circ}C$	75	W
Тj	Junction Operating Temperature	-40 to 150	°C
T _{stg} Storage Temperature		-55 to 150	°C

57

Figure 3. Connection Diagram

Figure 4. Current and Voltage Conventions

Table 4. Thermal Data

Symbol	Parameter	Value	Unit	
R _{thj-case}	Thermal Resistance Junction-case	Max	1.65	°C/W
R _{thj-amb}	Thermal Resistance Junction-ambient	Max	60	°C/W

ELECTRICAL CHARACTERISTICS

(8 < V_{CC} < 16 V; -40 \leq T_j \leq 125 °C unless otherwise specified)

Table 5. Power

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{CC}	Supply Voltage		6	13	26	V
In ⁽²⁾	Nominal Current	$T_{c} = 85 \ ^{\circ}C; \ V_{DS(on)} \leq 0.5; \ V_{CC} = 13 \ V$	3.4		5.2	А
Ron	On State Resistance	$I_{OUT} = I_n; V_{CC} = 13 V; T_j = 25 \ ^{\circ}C$	0.065		0.1	Ω
I _S	Supply Current	Off State; $T_j = 25 \text{ °C}$; $V_{CC} = 13 \text{ V}$		35	100	μA
V _{DS(MAX)}	Maximum Voltage Drop	$I_{OUT} = 13 \text{ A}; T_j = 85 \text{ °C}; V_{CC} = 13 \text{ V}$	1.2		2	V
Ri	Output to GND internal Impedance	T _j = 25 °C	5	10	2() ΓΩ	

Note: 2. In= Nominal current according to ISO definition for high side automotive switch. The Nominal Current is the current at T_c = 85 °C for battery voltage of 13V which produces a voltage drop of 0.5 V.

24

57

Table 6. Switching

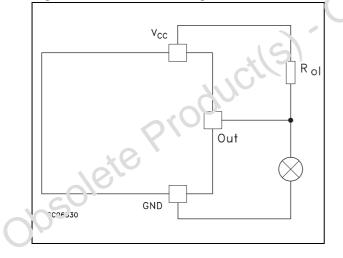
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)} ⁽³⁾	Turn-on Delay Time Of Output Current	R _{OUT} = 2.7 Ω	5	35	200	μs
$t_r^{(3)}$	Rise Time Of Output Current	R _{OUT} = 2.7 Ω	28	110	360	μs
$t_{d(off)}^{(3)}$	Turn-off Delay Time Of Output Current	R _{OUT} = 2.7 Ω	10	140	500	μs
$t_{f}^{(3)}$	Fall Time Of Output Current	Rou : - 2.7 Ω	28	75	360	μs
(di/dt) _{on}	Turn-on Current Slope	R _{OUT} = 2.7 Ω	0.003		0.1	A/µs
(di/dt) _{off}	Turn-off Current הארוה	R _{OUT} = 2.7 Ω	0.005		0.1	A/µs

Note: 3. See Switching Time Woveforms.

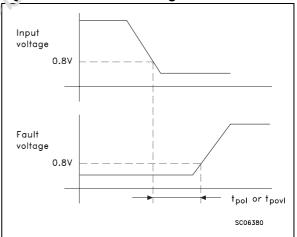
Table 7. Logic input

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
~~ <u>~</u>	Input Low Level Voltage				1.5	V
VIH	Input High Level Voltage		3.5		Note 4	V
V _{I(hyst)}	Input Hysteresis Voltage		0.2	0.9	1.5	V
l _{IN}	Input Current	$V_{IN} = 5 V; T_j = 25 °C$		30	100	μA
V _{ICL}	Input Clamp Voltage	l _{IN} = 10 mA l _{IN} = -10 mA	5	6 -0.7	7	V V

Note: 4. The V_{IH} is internally clamped at 6V about. It is possible to connect this pin to an higher voltage via an external resistor calculated to not exceed 10 mA at the input pin.


ELECTRICAL CHARACTERISTICS (cont'd)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{STAT}	Status Voltage Output Low	I _{STAT} = 1.6 mA			0.4	V
V _{USD}	Under Voltage Shut Down		3.5	4.5	6	V
V _{SCL} Status Clamp Voltage		$I_{STAT} = 10 \text{ mA}$ $I_{STAT} = -10 \text{ mA}$	5	6 0.7	7	V V
T _{TSD}	Thermal Shut-down Temperature		140	160	180	°C
T _{SD(hyst.)}	Thermal Shut-down Hysteresis				50	°C
T _R	Reset Temperature		125		10	C C
V _{OL} ⁽⁵⁾	Open Voltage Level	Off-State	2.5	4	5	V
I _{OL}	Open Load Current Level		0.6	0.9	1.4	Α
t _{povl} (6)	Status Delay		20	5	10	μs
t _{pol} (6)	Status Delay		50	500	2500	μs


Table 8. Protection and Diagnostics

Note: 5. $I_{OL(off)} = (V_{CC} - V_{OL})/R_{OL}$ (see figure 5) 6. $t_{povl} t_{pol}$: ISO definition (see figure 6).

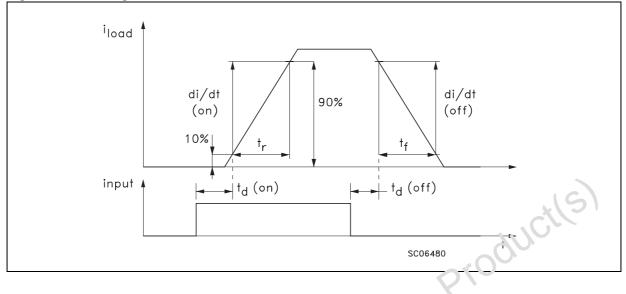

Figure 5. Note 5 relevant figure

Figure 6. Note 6 relevant figure

Figure 7. Switching Time Waveforms

FUNCTIONAL DESCRIPTION

The device has a common diagnostic output for both channels which indicates open load in onstate, open load in off-state, over temperature conditions and stuck-on to V_{CC} .

From the falling edge of the input signal, the status output, initially low to signal a fault condition (overtemperature or open load on-state), vil go back to a high state with a different aplay in case of overtemperature (tpov) and in case of open open load (tpol) respectively. היוב feature allows to discriminate the nature citie detected fault. To protect the device against short circuit and over current condition, the thermal protection turns the integrated Power MOS off at a minimum junction temperature of 140 °C. When this temperature returns to 125 °C the switch is automatically turned on again in short circuit the protection reacts with virtually no delay, the sensor (one for each channel) being located inside each of the two Power MOS areas. This positioning allows the device to operate with one channel in automatic thermal cycling and the other one on a normal load. An internal function of the devices ensures the fast demagnetization of inductive loads with a typical voltage (V_{demag}) of -18V. This function allows to greatly reduces the power dissipation according to the formula:

 $P_{dem} = 0.5 \cdot L_{load} \cdot (I_{load})^2 \cdot [(V_{CC}+V_{demag})/V_{demag}] \cdot f$

where f = switching frequency and V_{demag} = demagnetization voltage

The maximum inductance which causes the chip temperature to reach the shut-down temperature in a specified thermal environment is a function of the load current for a fixed V_{CC} , V_{demag} and f according to the above formula. In this device if the GND pin is disconnected, with V_{CC} not exceeding 16V, both channel will switch off.

PROTECTING THE DEVICE AGAINST REVERSE BATTERY

The simplest way to protect the device against a continuous reverse battery voltage (-26V) is to insert a Schottky diode between pin 1(GND) and ground, as shown in the typical application circuit (Figure 9).

The consequences of the voltage drop across this diode are as follows:

- If the input is pulled to power GND, a negative voltage of -V_f is seen by the device. (V_{IL}, V_{IH} thresholds and V_{STAT} are increased by V_f with respect to power GND).
- The undervoltage shutdown level is increased by V_f.

If there is no need for the control unit to handle external analog signals referred to the power GND, the best approach is to connect the reference potential of the control unit to node [1] (see application circuit in Figure 10), which becomes the common signal GND for the whole control board avoiding shift of V_{IH} , V_{IL} and V_{STAT} . This solution allows the use of a standard diode.

Á7/

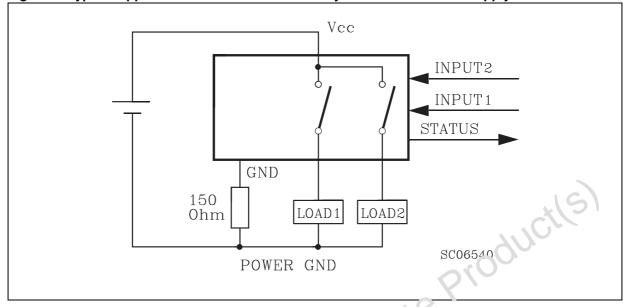
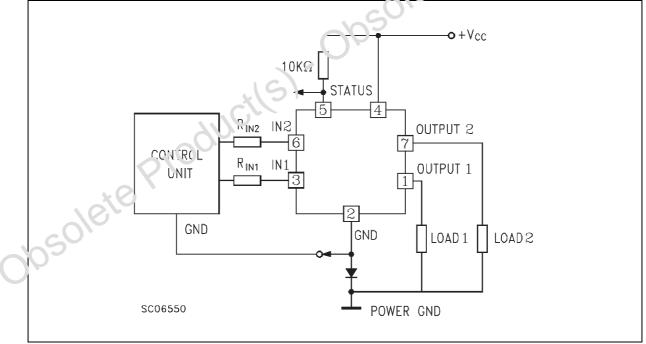

6/13

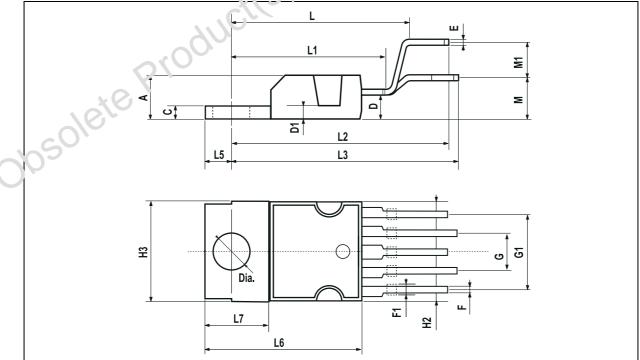
Table 9. Truth Table

		Input 1	Input 2	Output 1	Output 2	Diagnostic
Normal Operation		L H L H	L H H L	L H L H	L H H L	H H H H
Under voltage		Х	Х	L	L	Н
Thermal Shutdown	Channel 1	Н	Х	L	Х	L
	Channel 2	Х	Н	Х	L	L
Open Load	Channel 1	H L	X L	HL	X L	L L ⁽⁷⁾
	Channel 2	X L	H L	X L	HL	L <u>(</u> 7)
Output Shorted to V _{CC}	Channel 1	H L	X L	H H	Č	L
	Channel 2	X L	H L	X L	нн	L
Note: 7. With additional external resistor. Figure 8. Waveforms						


Figure 8. Waveforms

INPUT	NOP.MAL OPERATION	INPUT STATUS SWITCH On Off		OPEN LOAD
I OUT		IOUT		
		INPUT STATUS		THERMAL SHUTDOWN
	 UNDER VOLTAGE	SWITCH On Off		– 140 °C
INPUT			<u> </u>	—125 °C
LOAD CURRENT	OUTPUT SHOR ⁻ TO V _{CC}	ſED		
DIAG SWITCH On			SC06590	

Figure 9. Typical Application Circuit With A Schottky Diode For Reverse Supply Protection

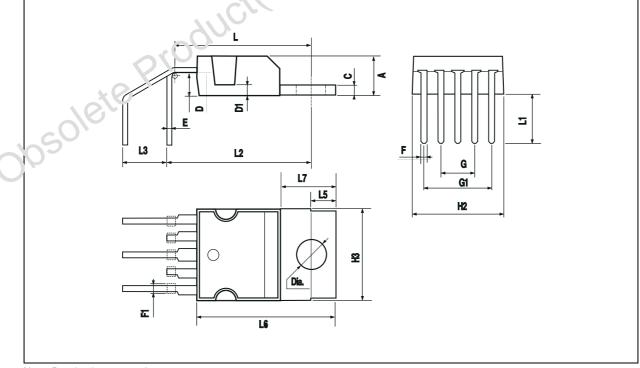

57

PACKAGE MECHANICAL

Ourseland		millimeters		
Symbol	Min	Тур	Max	
А			4.8	
С			1.37	
D	2.4		2.8	
D1	1.2		1.35	
E	0.35		0.55	
F	0.8		1.05	
F1	1		1.4	
G	3.2	3.4	<u> </u>	
G1	6.6	6.8	7	
H2			10.4	
H3	10.05	0	10.4	
L2	23.05	23.4	23.8	
L3	25.3	25.65	26.1	
L5	2.6		3	
L6	15.1		15.8	
L7	6		6.6	
Dia.	3.65	D'	3.85	

Table 10. PENTAWATT (vertical) Mechanical Data

Figure 11. PENTAWATT (vertical) Pacing Dimensions

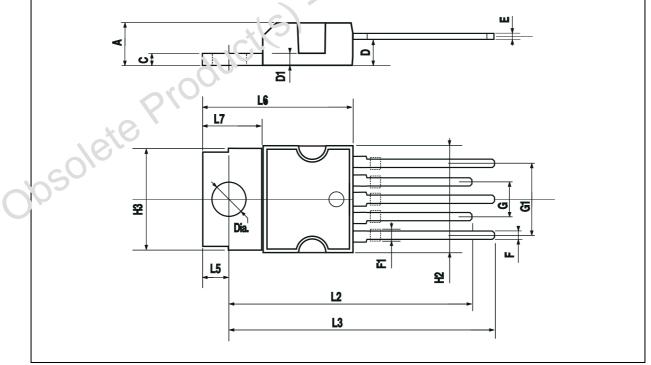

Note: Drawing is not to scale.

Symbol	millimeters				
Symbol	Min	Тур	Max		
А			4.8		
С			1.37		
D	2.4		2.8		
D1	1.2		1.35		
E	0.35		0.55		
F	0.8		1.05		
F1	1		1.4		
G	3.2	3.4	3.6		
G1	6.6	6.8	7.5		
H2			10.4		
H3	10.05		10.4		
L	14.2		15		
L1	5.7		6.2		
L2	14.6		15.2		
L3	3.5		4.1		
L5	2.6		3		
L6	15.1	S	15.8		
L7	6		6.6		
Dia.	3.65		3.85		

Table 11. PENTAWATT (horizontal) Mechanical Data

Figure 12. PENTAWATT (horizontal) Package Dimensions

57


Note: Drawing is not to scale.

10/13

Symbol		millimeters	
Symbol	Min	Тур	Max
A			4.8
С			1.37
D	2.4		2.8
D1	1.2		1.35
E	0.35		0.55
F	0.8		1.05
F1	1		1.4
G	3.2	3.4	3.6
G1	6.6	6.8	7.5
H2			10.4
H3	10.05		10.4
L2	23.05	23.4	23.8
L3	25.3	25.65	26.1
L5	2.6		3
L6	15.1		15.8
L7	6		6.6
Dia.	3.65	10S	3.85

Table 12. PENTAWATT (in-line) Mechanical Data

Figure 13. PENTAWATT (in-line) Package Dimensions

Note: Drawing is not to scale.

REVISION HISTORY

Table 13. Revision History

Date	Revision	Description of Changes
September-1994	1	First Issue
18-June-2004	2	Stylesheet update. No content change.

Obsolete Product(s). Obsolete Product(s)

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or other rights of third parties which may result from its use. No license is granted by implication or there in the subject to change without notice. This publication supersedes and replaces all information periods of STMicroelectronics products are not authorized for use as as fruited components in life support devices or systems without approval of STMicroelectronics products are not authorized for use as as fruited components in life support devices or systems without approval of STMicroelectronics products are not authorized for use as as fruited components in life support devices or systems without approval of STMicroelectronics products are not authorized for use as as fruited components in life support devices or systems without approval of STMicroelectronics products are not authorized for use as as fruited components in life support devices or systems without approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics are subject for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use as as fruited approval of STMicroelectronics products are not authorized for use a

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States

www.st.com

