
TOSHIBA

CIRCUIT DIAGRAM

PIN NAMES

φ 1	Clock (Phase 1)
φ 2	Clock (Phase 2)
ВТ	Boost Pulse
SH	Shift Gate
RS	Reset Gate
OS	Signal Output
DOS	Compensation Output
OD	Power
SS	Ground
NC	Non Connection

961001EBA2'

The products described in this document are subject to foreign exchange and foreign trade control laws.
The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
The information contained herein is subject to change without notice.

OPTICAL / ELECTRICAL CHARACTERISTICS

(Ta = 25°C, V_{OD} = 12V, V ϕ = V_{SH} = V_{RS} = V_{BT} = 5V (PULSE), f ϕ = 0.5MHz, f_{RS} = 1MHz, Load Resistance = 100k Ω , t_{INT} (Integration Time) = 10ms, Light Source = Daylight Fluorescent Lamp)

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Sensitivity	R	64	80	96	V / Ix•s	(Note 2)
Photo Response Non Uniformity	PRNU		_	10	%	(Note 3)
Saturation Output Voltage	VSAT	0.6	0.8		V	(Note 4)
Saturation Exposure	SE	0.006	0.01		lx∙s	(Note 5)
Dark Signal Voltage	VMDK	—	2	5	mV	(Note 6)
Analog Current Dissipation	IOD	_	3	5	mA	V _{OD} = 5V
Total Transfer Efficiency	TTE	92	95	_	%	
Output Impedance	ZO	_	0.5	1	kΩ	
Dynamic Range	DR		400	_		(Note 7)
DC Signal Output Voltage	VOS	1.5	3.0	4.5	V	(Note 8)
DC Compensation Output Voltage	V _{DOS}	1.5	3.0	4.5	V	(Note 8)
DC Mismatch Voltage	Vos-Vdos	—		100	mV	

(Note 2) Sensitivity for LED (660nm) is 600V/lx·s (Typ.)

(Note 3) Measured at 50% of SE (Typ.)

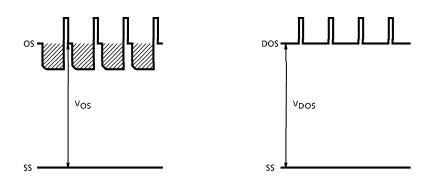
Definition of PRNU : PRNU = $\frac{\Delta \chi}{\overline{\chi}}$ × 100 (%)

Where \overline{x} is average of total signal outputs and Δx is the maximum deviation from \overline{x} under uniform illumination.

(Note 4) V_{SAT} is defined as minimum saturation output voltage of all effective pixels.

(Note 5) Definition of SE : SE = $\frac{V_{SAT}}{R}$ (Ix·s)

(Note 6) $V_{\mbox{MDK}}$ is defined as maximum dark signal voltage of all effective pixels.

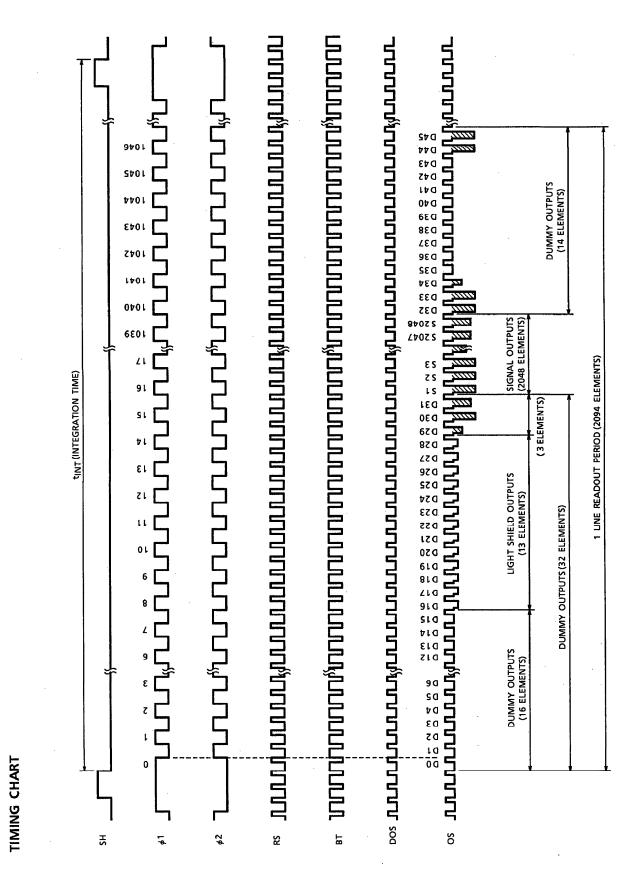


TOSHIBA

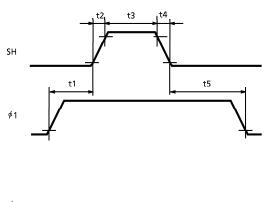
(Note 7) Definition of DR : DR = $\frac{V_{SAT}}{V_{MDK}}$

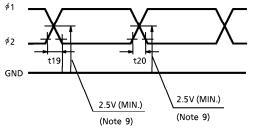
 $V_{\mbox{MDK}}$ is proportional to $t_{\mbox{INT}}$ (Integration Time). So the shorter $t_{\mbox{INT}}$ condition makes wider DR value.

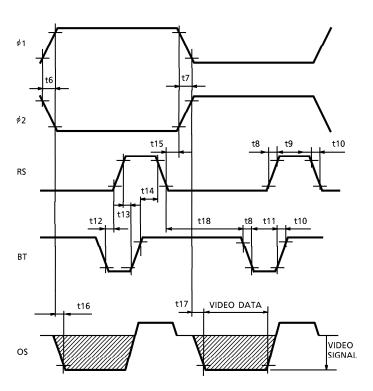
(Note 8) DC signal output voltage and DC compensation output voltage are defined as follows:



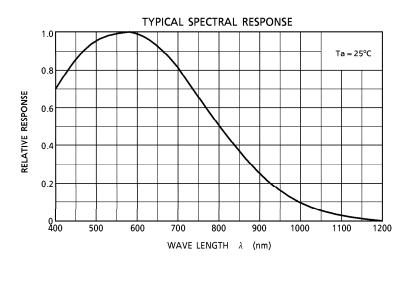
OPERATING CONDITION

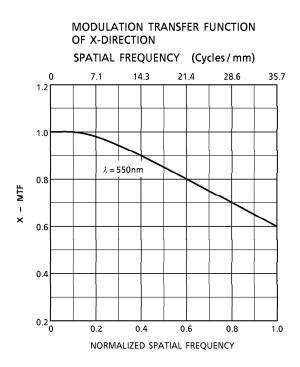

CHARACTERISTIC		SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Pulse Voltage	"H"Level	V_{ϕ}	4.5	5.0	5.5	v
	"L" Level		0	0.2	0.5	
Chift Dules Valtage	"H"Level	v _{sH}	4.5	5.0	5.5	v
Shift Pulse Voltage	"L"Level		vsн	0	0.2	0.5
Peret Peret Dules Valters	"H"Level	V _{RS}	4.5	5.0	5.5	v
Reset Boost Pulse Voltage	"L" Level	V _{BT}	0	0.2	0.5	v
Power Supply Voltage		V _{OD}	4.5	5.0	5.5	V

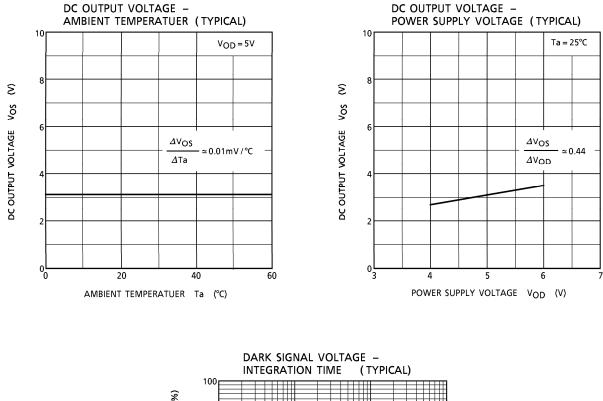

CLOCK CHARACTERISTICS (Ta = 25°C)

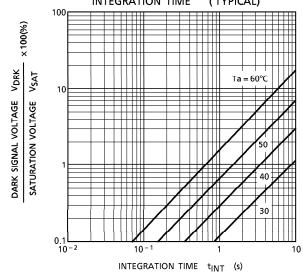

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Clock Pulse Frequency	f _¢	0.01	0.5	1.0	MHz
Reset Pulse Frequency	f _{RS}	0.02	1.0	2.0	MHz
Clock Capacitance	C _{¢A}	_	400	500	рF
BT Gate Capacitance	C _{BT}	—	10	25	pF
Shift Gate Capacitance	CSH	_	200	250	рF
Reset Gate Capacitance	C _{RS}	_	10	25	pF

TIMING REQUIREMENTS

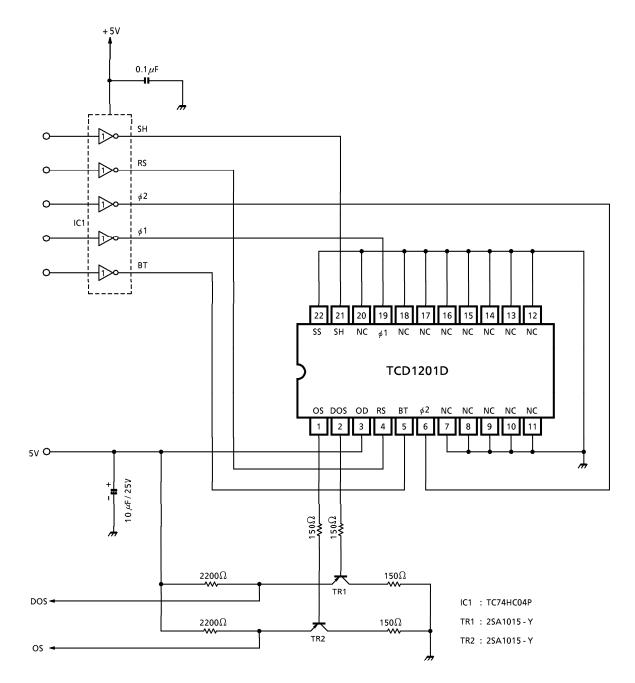







CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Dulco Timing of Ski and (1 /2	t1	0	100	—	ns
Pulse Timing of SH and $\phi 1$, $\phi 2$	t5	2000	3000	—	ns
SH Pulse Rise, and Fall Time	t2, t4	0	50	—	ns
SH Pulse Width	t3	1000	2000	—	ns
ϕ 1, ϕ 2 Pulse Rise and Fall Time	t6, t7	0	60	—	ns
RS, BT Pulse Rise and Fall Time	t8, t10	0	20	—	ns
RS Pulse Width	t9	60	250	—	ns
BT Pulse Width	t11	70	250	—	ns
	t12	50	100	_	ns
Dulas Timing of DC and DT	t13	20	_	—	ns
Pulse Timing of RS and BT	t14	40	_	_	ns
	t18	200	_	_	ns
Pulse Timing of ϕ 1, ϕ 2, RS	t15	20	_	_	ns
Video Data Delay Time	t16, t17	—	80	—	ns

(Note 9) If $\phi 1 \& \phi 2$ pulse cross point could't be kept over 2.5V, it should be 1.5V and t19 and t20 should be 60ns.



TYPICAL DRIVE CIRCUIT

CAUTION

1. Window Glass

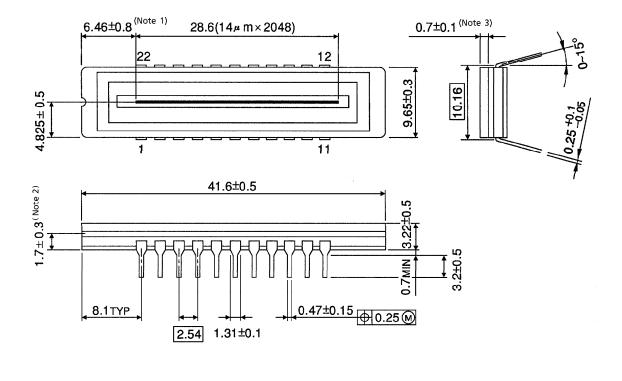
The dust and stain on the glass window of the package degrade optical performance of CCD sensor.

Keep the glass window clean by saturating a cotton swab in alcohol and lightly wiping the surface, and allow the glass to dry, by blowing with filtered dry N₂.

Care should be taken to avoid mechanical or thermal shock because the glass window is easily to damage.

2. Electrostatic Breakdown

Store in shorting clip or in conductive foam to avoid electrostatic breakdown.


3. Incident Light

CCD sensor is sensitive to infrared light. Note that infrared light component degrades resolution and PRNU of CCD sensor.

4. Lead Frame Forming

Since this package is not stout against mechanical stress, you should not reform the lead frame. We recommend to use a IC-inserter when you assemble to PCB. OUTLINE DRAWING WDIP22-G-400-2.54A (D)

Unit : mm

- (Note 1) No. 1 SENSOR ELEMENT (S1) TO EDGE OF PACKAGE.
- (Note 2) TOP OF CHIP TO BOTTOM OF PACKAGE.
- (Note 3) GLASS THICKNES (n = 1.5)

Weight: 4.4g (Typ.)