THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1.25	°C/W
Rthj-amb	Thermal Resistance Junction-ambient Max	100	°C/W
ΤI	Maximum Lead Temperature For Soldering Purpose	300	°C

AVALANCHE CHARACTERISTICS

Symbol	Parameter	Max Value	Unit
I _{AR}	Avalanche Current, Repetitive or Not-Repetitive (pulse width limited by T_j max)	2.5	A
E _{AS}	Single Pulse Avalanche Energy (starting $T_j = 25 \text{ °C}$, $I_D = I_{AR}$, $V_{DD} = 50 \text{ V}$)	300	mJ

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25 °C UNLESS OTHERWISE SPECIFIED) OFF

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source Breakdown Voltage	$I_{D} = 250 \ \mu A, \ V_{GS} = 0$	500			V
I _{DSS}	Zero Gate Voltage	V _{DS} = Max Rating			1	μA
	Drain Current (V _{GS} = 0)	V_{DS} = Max Rating, T_{C} = 125 °C			10	μΑ
I _{GSS}	Gate-body Leakage Current (V _{DS} = 0)	$V_{GS} = \pm 30V$			±100	nA

ON (1)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3	4	5	V
R _{DS(on)}	Static Drain-source On Resistance	V _{GS} = 10V, I _D = 2.5A		0.7	0.8	Ω

DYNAMIC

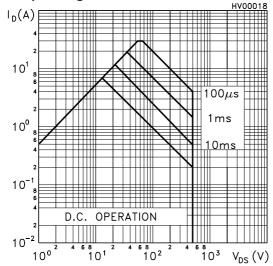
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
g _{fs} (1)	Forward Transconductance	$V_{DS} = 25V_{x,} I_{D} = 2.5A$		3.5		S
Ciss	Input Capacitance	$V_{DS} = 25V, f = 1 \text{ MHz}, V_{GS} = 0$		415		pF
Coss	Output Capacitance			88		pF
C _{rss}	Reverse Transfer Capacitance			12		pF
C _{oss eq.} (2)	Equivalent Output Capacitance	$V_{GS} = 0V, V_{DS} = 0V \text{ to } 400V$		50		pF
R _G	Gate Input Resistance	f=1 MHz Gate DC Bias = 0 Test Signal Level = 20mV Open Drain		3		Ω

Image: Pulse duration = 300 μs, duty cycle 1.5 %.
 Coss eq. is defined as a constant equivalent capacitance giving the same charging time as Coss when V_{DS} increases from 0 to 80% V_{DSS}.

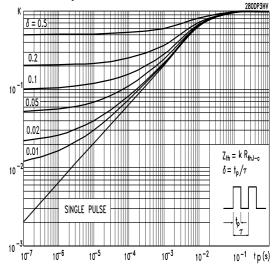
ELECTRICAL CHARACTERISTICS (CONTINUED) SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on Delay Time	$V_{DD} = 250V, I_D = 2.5A$		16		ns
tr	Rise Time	$R_G = 4.7\Omega V_{GS} = 10V$ (see test circuit, Figure 3)		8		ns
Qg	Total Gate Charge	$V_{DD} = 400V, I_D = 7.5A$		13		nC
Q _{gs}	Gate-Source Charge	$V_{GS} = 10V$		5		nC
Q _{gd}	Gate-Drain Charge			6		nC

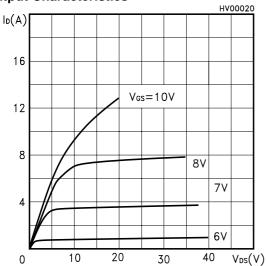
SWITCHING OFF

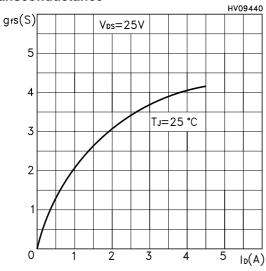

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
t _{r(Voff)}	Off-voltage Rise Time	$V_{DD} = 400V, I_D = 5A,$		14		ns
t _f	Fall Time	$R_G = 4.7\Omega$, $V_{GS} = 10V$ (see test circuit, Figure 5)		6		ns
t _c	Cross-over Time			13		ns

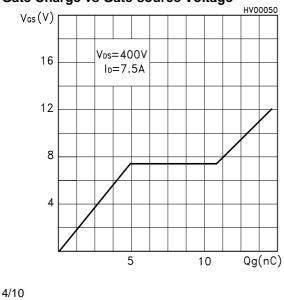
SOURCE DRAIN DIODE

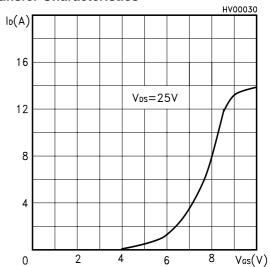

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain Current				7.5	А
I _{SDM} (2)	Source-drain Current (pulsed)				30	А
V _{SD} (1)	Forward On Voltage	$I_{SD} = 7.5A, V_{GS} = 0$			1.5	V
t _{rr}	Reverse Recovery Time	I _{SD} = 5A, di/dt = 100A/µs,		185		ns
Q _{rr}	Reverse Recovery Charge	V _{DD} = 100V, T _j = 25°C (see test circuit, Figure 5)		1.1		μC
I _{RRM}	Reverse Recovery Current			11.5		А
t _{rr} Q _{rr} I _{RRM}	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$I_{SD} = 5A$, di/dt = 100A/µs, V _{DD} = 100V, T _j = 150°C (see test circuit, Figure 5)		270 1.6 12		ns μC Α

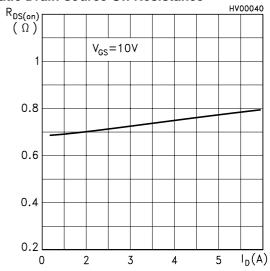
Note: 1. Pulsed: Pulse duration = 300 μs, duty cycle 1.5 %.
2. Pulse width limited by safe operating area.

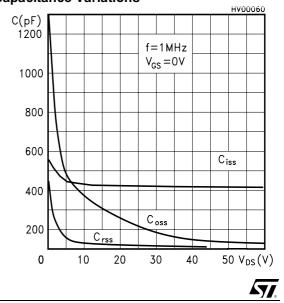

Safe Operating Area

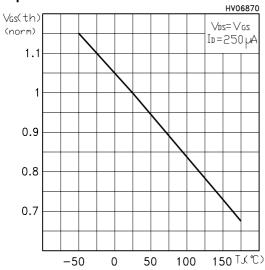

Thermal Impedance


Output Characteristics

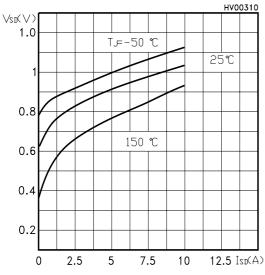

Transconductance

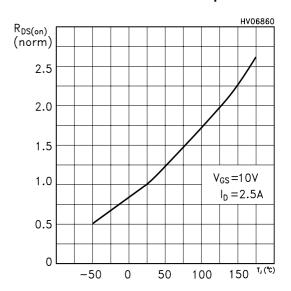

Gate Charge vs Gate-source Voltage


Transfer Characteristics



Static Drain-source On Resistance

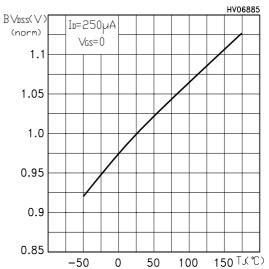
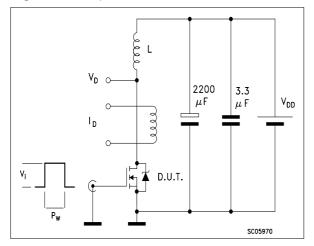
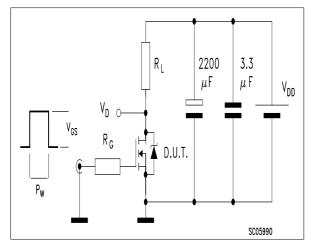

Capacitance Variations



Normalized Gate Threshold Voltage vs Temperature

Normalized On Resistance vs Temperature

Normalized BVDSS vs Temperature

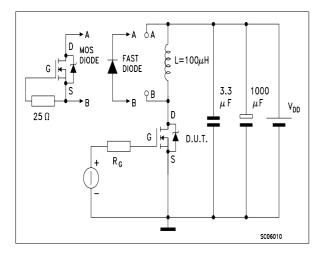
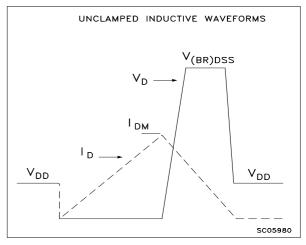
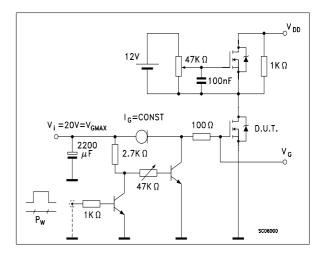

Fig. 1: Unclamped Inductive Load Test Circuit

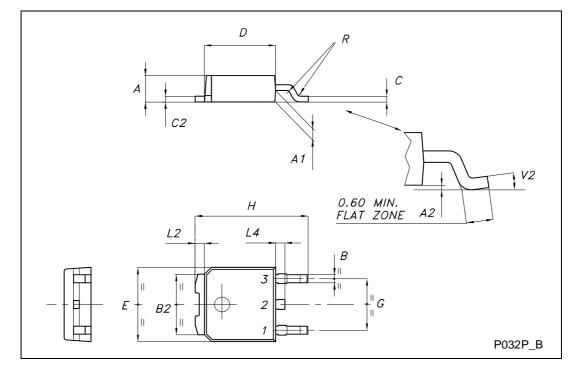
Fig. 3: Switching Times Test Circuit For Resistive Load

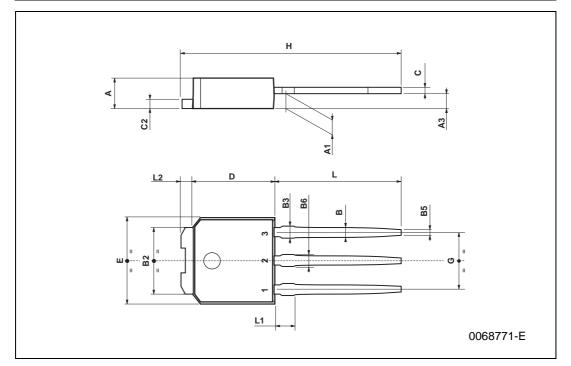
Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

6/10

Fig. 2: Unclamped Inductive Waveform

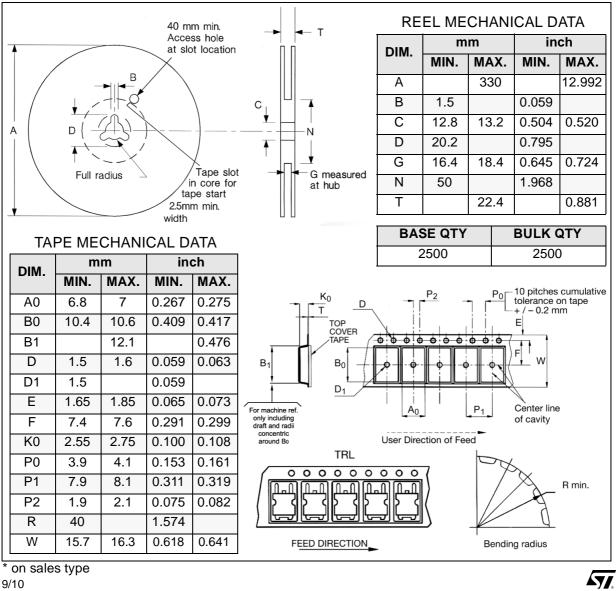




Fig. 4: Gate Charge test Circuit


DIM.		mm			inch			
DIWI.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.		
А	2.20		2.40	0.087		0.094		
A1	0.90		1.10	0.035		0.043		
A2	0.03		0.23	0.001		0.009		
В	0.64		0.90	0.025		0.035		
B2	5.20		5.40	0.204		0.213		
С	0.45		0.60	0.018		0.024		
C2	0.48		0.60	0.019		0.024		
D	6.00		6.20	0.236		0.244		
E	6.40		6.60	0.252		0.260		
G	4.40		4.60	0.173		0.181		
н	9.35		10.10	0.368		0.398		
L2		0.8			0.031			
L4	0.60		1.00	0.024		0.039		
V2	0°		8°	0°		0 ^o		

TO-252 (DPAK) MECHANICAL DATA

DIM		mm		inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А	2.2		2.4	0.086		0.094	
A1	0.9		1.1	0.035		0.043	
A3	0.7		1.3	0.027		0.051	
В	0.64		0.9	0.025		0.031	
B2	5.2		5.4	0.204		0.212	
B3			0.85			0.033	
B5		0.3			0.012		
B6			0.95			0.037	
С	0.45		0.6	0.017		0.023	
C2	0.48		0.6	0.019		0.023	
D	6		6.2	0.236		0.244	
Е	6.4		6.6	0.252		0.260	
G	4.4		4.6	0.173		0.181	
Н	15.9		16.3	0.626		0.641	
L	9		9.4	0.354		0.370	
L1	0.8		1.2	0.031		0.047	
L2		0.8	1		0.031	0.039	


TO-251 (IPAK) MECHANICAL DATA

DPAK FOOTPRINT TUBE SHIPMENT (no suffix)* 6.7 0.6 (±0.1) 1.8 3.0 ,1.6 **BASE QTY** 75 2.3 .3 (±0.2) **BULK QTY** 6.7 2.3 3000 2 Tube length 532 (±0.5) All dimensions 1.6 are in millimeters All dimensions are in millimeters 6 (±0.1)

TAPE AND REEL SHIPMENT (suffix "T4")*

9/10

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information systems without express written approval of STMicroelectronics. © The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.

© http://www.st.com

10/10