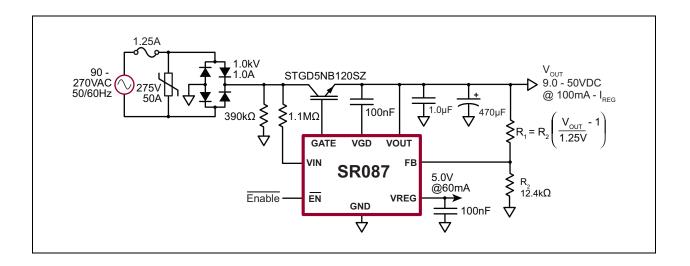

Functional Block Diagrams



DS20005544A-page 2

Typical Application Circuits

^{© 2017} Microchip Technology Inc.

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Output Voltage, V _{OUT}	–0.3V to 56V
Feedback Voltage, V _{FB}	
Enable Voltage, V _{EN}	–0.3V to 6.5V
Operating Junction Temperature, T _J	–40°C to +125°C

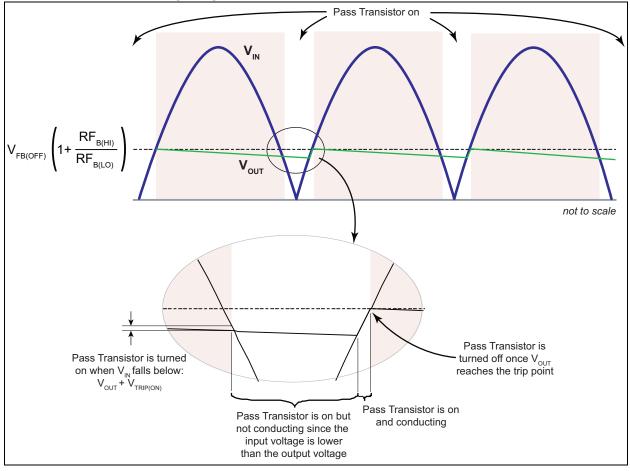
† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Parameter	Sym.	Min.	Тур.	Max.	Unit	Conditions
Output Voltage	V _{OUT}	9		50	V	
Load on $V_{\mbox{OUT}}$ including Feedback Divider and Load on $V_{\mbox{REG}}$	I _{OUT}	100		_	μA	
Headroom for Internal Linear Regulation ($V_{OUT} - V_{REG}$)	V_{HR}	4	_	_	V	

ELECTRICAL CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, $T_A = -40^{\circ}C$ to +85°C. Voltages referenced to GND pin.									
Parameter		Sym.	Min.	Тур.	Max.	Unit	Conditions		
Current Consumption at V _{GD}	I _{GD}		—	60	μA				
Current Consumption of the Lower	Circuitry	I _{OUT(INT)}	_	—	400	μA	V _{OUT} = 9V–50V		
Gate Drive Supply Voltage		V _{GD}	11	13	15	V	Note 1		
Gate Output High Voltage		V _{GATE(HI)}	11	—	15	V	Note 1		
Gate Output Low Voltage		V _{GATE(LO)}			0.5	V	Note 1		
Feedback Voltage (Gate Off)	V _{FB(OFF)}	1.18	1.25	1.31	V				
Feedback Voltage (Hysteresis)		V _{FB(HYST)}	_	50	_	mV			
Feedback Input Current		I _{FB}	_	—	500	nA			
V _{IN} Trip Voltage (Gate On)		V _{TRIP(ON)}	0	—	3	V	Note 1		
V _{IN} Trip Voltage (Gate Off)		V _{TRIP(OFF)}	9	—	15	V	Note 1		
Enable Voltage, On		V _{EN(ON)}	0.2	—	_	V			
Enable Voltage, Off		V _{EN(OFF)}	_	—	0.75	V_{REG}			
V _{IN} Gate Turn-on Delay		t _{DIG(ON)}	0	—	1	μs	C _{GATE} = 1 nF		
V _{IN} Gate Turn-off Delay		t _{DIG(OFF)}	_	—	600	ns	C _{GATE} = 1 nF		
Feedback Gate Turn-off Delay		t _{DFG(OFF)}	_	—	450	ns	C _{GATE} = 1 nF, V _{FB} = 1.5V		
Regulated Output Voltage	SR086	V _{REG}	3.125	3.3	3.465	V	I _{LOAD} = 1 mA, V _{OUT} = 9V		
Regulated Output Voltage	SR087		4.750	5	5.250	V			
V _{REG} Load Regulation	$\Delta_{\rm I} {\rm V}_{\rm REG}$	-50	_	+50	mV	0 mA < I _{LOAD} < 60 mA, V _{OUT} = 9V, T _{AMB} = 25°C			
Gate V_{GD} Diode Drop	VD	_	_	1	V	I = 20 mA			


Note 1: Referenced to V_{OUT}

TEMPERATURE CHARACTERISTICS

Electrical Characteristics: Unless otherwise noted, for all specifications $T_A = T_J = +25^{\circ}C$.										
Parameter Sym. Min. Typ. Max. Unit Conditions										
TEMPERATURE RANGE										
Operating Junction Temperature	Operating Junction Temperature T _J –40 — +125 °C									
PACKAGE THERMAL RESITANCE										
8-lead SOIC (with Heat Slug)	θ_{JA}		84	_	°C/W					

 $[\]ensuremath{\textcircled{}^{\odot}}$ 2017 Microchip Technology Inc.

SRO86 and SR087 Timing Diagram

2.0 PIN DESCRIPTION

The descriptions of the SR086/SR087 pins are listed on Table 2-1. Refer to **Package Type** for the location of pins.

Pin Number	SR086 Pin Name	SR087 Pin Name	Description				
1	VIN	VIN	Rectified AC input voltage				
2	EN	EN	Active low enable input				
3	GND	GND	Circuit ground (Note 1)				
4	VREG	VREG	Regulated output voltage (Note 2)				
5	FB	FB	Feedback input				
6	VOUT	VOUT	Output voltage (9V–50V adj.)				
7	VGD	VGD	Gate drive supply (referenced to VOUT)				
8	GATE	GATE	Drives external IGBT pass transistor				

TABLE 2-1: PIN FUNCTION TABLE

Note 1: Circuit ground will be at the AC line potential.

2: Fixed 3.3V for SR086 and fixed 5V for SR087

^{© 2017} Microchip Technology Inc.

3.0 APPLICATION INFORMATION

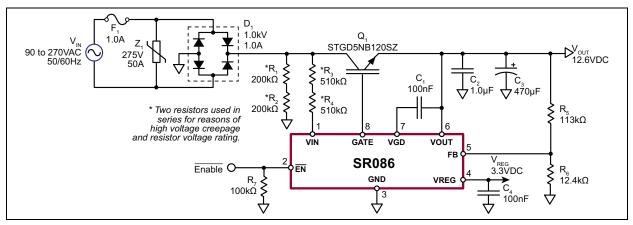


FIGURE 3-1: SR086 Typical Application Circuit.

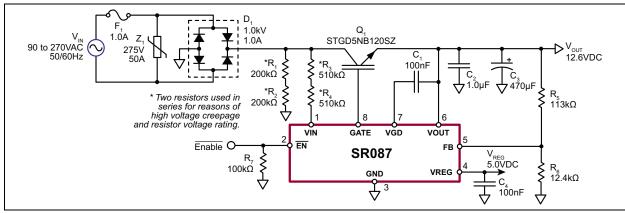


FIGURE 3-2: SR087 Typical Application Circuit.

3.1 Output Voltage

 V_{OUT} may be adjusted in the range of 9V to 50V by changing feedback resistor R_5 based on Equation 3-1.

EQUATION 3-1:

$$R_5 = R_6[(V_{OUT}/1.25V) - 1]$$

Leave R₆ at 12.4 k Ω or less as it assures a minimum 100 μ A load required for the proper operation of SR086/SR087. Change R₃ and R₄ according to Equation 3-4. Select C₂ and C₃ with appropriate voltage ratings. For C₃, use a low-ESR capacitor with an adequate ripple current rating (800 mA_{RMS}). Use ceramic for C₂.

Since V_{REG} is a linear regulator supplied from V_{OUT} , the maximum current available from V_{REG} is reduced as V_{OUT} is increased due to power considerations. Refer to Equation 3-2 for SR086 and Equation 3-3 for SR087.

EQUATION 3-2:

$$I_{REG(MAX)} = \frac{1.5W}{(V_{OUT} - 3.3V)}$$
 or 60 mA, whichever is less

EQUATION 3-3:

$$I_{REG(MAX)} = \frac{1.5W}{(V_{OUT} - 5V)}$$
 or 60 mA, whichever is less

3.2 Input Voltage

To reduce standby power for 230 VAC-only applications or for supply voltages less than 90 Vrms, R_3 and R_4 should be changed according to Equation 3-4. R_1+R_2 should remain at 400 k Ω or less. Two resistors in series are used to ensure adequate creepage distances for 230 VAC operation. For 120 VAC-only applications, single resistors may be used.

EQUATION 3-4: R₃ + R₄ EQUATION

$$(R_3 + R_4) < \frac{\sqrt{2V_{IN^2} - V_{IN^2}} - V_x \cos \left(\frac{V_x}{\sqrt{2} \times V_{IN}}\right)}{\Pi \times 25 \mu A}$$

Where: $V_x = V_{OUT} + 15V$

3.3 Output Ripple

Storage capacitor C₃ was sized to provide about $2V_{P-P}$ ripple at 100 mA load (I_{OUT} + I_{REG}). For lighter loads, C₃ may be reduced. Conversely, C₃ may be increased for lower ripple. Use a low-ESR capacitor with an adequate ripple current rating (e.g. 800 mA_{RMS} for 100 mA loads). Efficiency and output current capability may drop with increased capacitance because of a smaller conduction angle associated with lower ripple. Due to feedback hysteresis, ripple cannot be reduced below 4%. See Equation 3-5.

EQUATION 3-5:

$$V_{RIPPLE(P-P)} \approx (I_{OUT} + I_{REG})/2f_{IN}C_3$$

Note: V_{REG} requires at least 4V of headroom. Therefore, V_{OUT}, including ripple, must not fall below 7.3V for SR086 and 9V for SR087.

3.4 Line Transformer

During initial testing, it is tempting to use an isolation transformer or a variable transformer on the AC line. However, the high inductance of the transformer (frequently in mH range) should not be used because it interferes with the normal operation of the SR086/SR087. This is not a concern with the normal inductance of the AC line or for AC line filters.

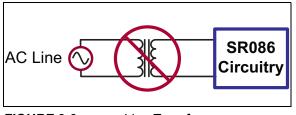


FIGURE 3-3:

Line Transformer.

As shown in Figure 3-3, the SR086/SR087 draw current from the AC line (in short, high current pulses). The transformer's high inductance tends to limit the current pulse. Furthermore, inductive kickback on the falling edge of the current pulse can create high voltage spikes which must be absorbed by the transient protector.

Use the minimum anticipated RMS value for $V_{\rm IN}.$ Take resistor tolerance into account, selecting the next lower standard value. Choosing a lower value has no effect other than higher standby power.

3.5 Electromagnetic Interference (EMI) Capacitor

Small-value capacitors from circuit common to earth ground should not be used as they prevent the SR086/SR087 from operating. See Figure 3-4.

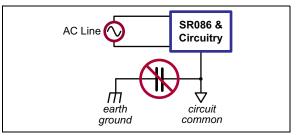


FIGURE 3-4: EMI Capacitor.

3.6 EMI

The SR086/SR087 circuits, as shown in the **Functional Block Diagrams**, meet FCC Class B and CISPR 14-1 (household appliances) requirements for conducted emissions for combined loads of less than 20 mA ($I_{OUT} + I_{REG}$).

3.7 Fuse

Although the average current drawn from the AC line is low, the RMS current is fairly high due to the current being drawn in short high-current pulses. Since a fuse is basically a resistor with a power dissipation given by I_{RMS}^2 R, the fuse must be sized for the RMS current and not the average current. For a 1W load at 120 VAC, the RMS current is 700 mA_{RMS}, while the RMS current for a 0.5W load at 230 VAC is 360 mA_{RMS}.

3.8 Load

Total load on the SR086/SR087 is the total load current drawn from V_{OUT} (I_{OUT}), and since the linear regulator is supplied from V_{OUT}, it also includes the current drawn from V_{REG} (I_{REG}). Total load is calculated in Equation 3-6 and Equation 3-7.

^{© 2017} Microchip Technology Inc.

EQUATION 3-6:

 $I_{LOAD} = I_{OUT} + I_{REG}$

EQUATION 3-7:

 $P_{LOAD} = V_{OUT}(I_{OUT} + I_{REG})$

3.9 Uninterruptible Power Supply (UPS)

The SR086/SR087 will not operate from a UPS with a square wave output. This type of output is usually referred to as "modified sine wave."

3.10 Transient Protection

The transient protector must be located before the bridge rectifier. The reason for this is to minimize capacitance to allow the rectified AC to fall below V_{OUT} .

Since there is no capacitor to absorb AC line transients, complete transient protection must be provided by the TVS or MOV device. Since the recommended IGBT is rated at 1.2 kV and the SR086/SR087 never see the full input voltage, the bridge rectifier becomes the limiting element when selecting an MOV. When using a 1 kV bridge, an MOV having a clamping voltage of greater than 1 kV is recommended.

An RC network on the AC line, as shown in Figure 3-5 and Figure 3-6, affords additional protection from line transients as well as reducing conducted EMI. It does, however, reduce power supply efficiency.

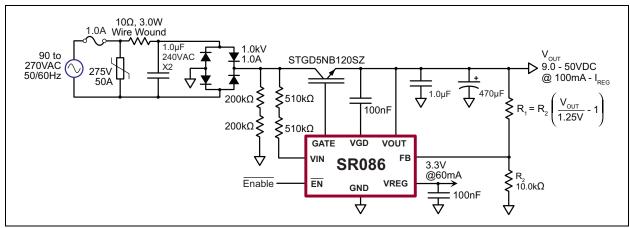


FIGURE 3-5: SR086 Additional Transient Protection.

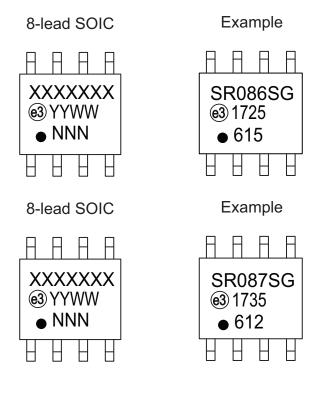
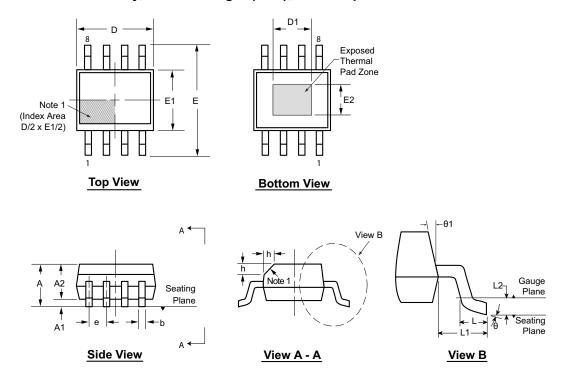



FIGURE 3-6:

SR087 Additional Transient Protection.


4.0 PACKAGING INFORMATION

4.1 Package Marking Information

Legen	d: XXX Y YY WW NNN @3 *	Product Code or Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:	be carried characters	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for product code or customer-specific information. Package may or e the corporate logo.

8-Lead SOIC (Narrow Body w/Heat Slug) Package Outline (SG) 4.90x3.90mm body, 1.70mm height (max), 1.27mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

1. If optional chamfer feature is not present, a Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/ identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	D1	E	E1	E2	е	h	L	L1	L2	θ	θ1
	MIN	1.25*	0.00	1.25	0.31	4.80*	3.30 [†]	5.80*	3.80*	2.29†		0.25	0.40			0 °	5°
Dimension (mm)	NOM	-	-	-	-	4.90	-	6.00	3.90	-	1.27 BSC	-	-	1.04 REF	0.25 BSC	-	-
	MAX	1.70	0.15	1.55*	0.51	5.00*	3.81 [†]	6.20*	4.00*	2.79†	DOO	0.50	1.27		000	8 0	15°

JEDEC Registration MS-012, Variation BA, Issue E, Sept. 2005.

* This dimension is not specified in the JEDEC drawing. † This dimension differs from the JEDEC drawing.

Drawings not to scale.

APPENDIX A: REVISION HISTORY

Revision A (May 2017)

- Converted and merged Supertex
 Doc #s DSFP-SR086 and DSFP-SR087 to
 Microchip DS20005544A
- · Changed the package marking format
- Changed the quantity of the SG package from 3000/Reel to 3300/Reel
- Made minor text changes all throughout the document

^{© 2017} Microchip Technology Inc.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

PART NO.	<u>xx</u>		- <u>x</u> - x	Exa	amples:	
Device	Package Options		Environmental Media Type	a)	SR086SG-G:	Adjustable Offline Inductorless Switching Regulator with Addi- tional 3.3V Internal Regulator, 8-lead SOIC (with Heat Slug), 3300/Reel
Devices:	SR086	=	Adjustable Offline Inductorless Switching Regulator with Additional 3.3V Internal Regulator	b)	SR087SG-G:	Adjustable Offline Inductorless Switching Regulator with Addi-
	SR087	=	Adjustable Offline Inductorless Switching Regulator with Additional 5V Internal Regulator			tional 5V Internal Regulator, 8-lead SOIC (with Heat Slug), 3300/Reel
Package:	SG	=	8-lead SOIC (with Heat Slug)			
Environmental:	G	=	Lead (Pb)-free/RoHS-compliant Package			
Media Type:	(blank)	=	3300/Reel for an SG Package			

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-1738-5

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830 Taiwan - Taipei

Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820