

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

Cathode-Anode Reverse Breakdown Volt. V_{KA}	37V
Operating Cathode Current (cont.) I _{KA}	.150mA
Reference Input Current Range I _{REF}	10mA
Power Dissipation SOT-89-TO-92 (Cont. 25°C) P_{D}	770mW
Junction Temperature	150°C
Storage Temperature T _{STG} 65°C to	o 150°C
ESD Rating (HBM - Human Body Model)	2kV

OPERATING RATINGS

 $\label{eq:cathode-Anode Reverse Breakdown Volt. V_{KA} \dots 36V \\ Operating Cathode Current (cont.) I_{KA} \dots <100 \\ Main Temperature Range \dots -40 \\ O^{\circ}C to 125 \\ O^{\circ}C \\ O^{$

ELECTRICAL SPECIFICATIONS

Specifications with standard type are for an Operating Ambient Temperature of $T_A = 25^{\circ}$ C only; limits applying over the full Operating Ambient Temperature range are denoted by a "•". Minimum and Maximum limits are guaranteed through test, design, or statistical correlation. Typical values represent the most likely parametric norm at $T_A = 25^{\circ}$ C, and are provided for reference purposes only.

Parameter	Min.	Тур.	Max.	Units		Conditions	
Reference Voltage	2.493	2.503	2.515	V		Test circuit 1 V _{KA} =V _{REF} , I _{KA} =10mA	
ΔV_{REF} with temperature T_{C}		4.5	8	mV		Test circuit 1 $V_{KA}=V_{REF}, I_{KA}=10$ mA, 0°C $\leq T_A \leq 70$ °C	
ΔV_{REF} with temperature T_{C}		4.5	16	mV	•	Test circuit 1 V _{KA} =V _{REF} , I _{KA} =10mA	
Ratio of change in V_{REF} to Cathode Voltage ΔV_{REF} / ΔV_{KA}	-2.7	-1.0		$m \rangle / \langle \rangle /$		Test circuit 2 $V_{REF} \le \Delta V_{KA} \le 10V, I_{KA}=10mA$	
	-2	-0.4		IIIV/V		Test circuit 2 10V $\leq \Delta V_{KA} \leq$ 36V, I _{KA} =10mA	
Reference Input Current I_{REF}		0.7	4	μA		Test circuit 2 I _{KA} =10mA, R1=10k Ω , R2= ∞	
I_{REF} Temperature Deviation ΔI_{REF}		0.4	1.2	μA	•	Test circuit 2 I _{KA} =10mA, R1=10k Ω , R2= ∞	
$\begin{array}{l} \mbox{Minimum } I_{\mbox{\tiny KA}} \mbox{ for Regulation} \\ I_{\mbox{\tiny KA(MIN)}} \end{array}$		0.4	1	mA		Test circuit 1 $V_{KA}=V_{REF}$	
Off State Leakage $I_{\mbox{\scriptsize KA}(\mbox{\scriptsize OFF})}$		40	250	nA		Test circuit 3 V _{KA} =0, V _{REF} =36V	
Dynamic Outout Impedance Z_{KA}		0.15	0.5	Ω		Test circuit 1 fz≤1KHz, I _{KA} =1 to 100mA	

BLOCK DIAGRAM

Fig. 2: SPX431A Block Diagram

PIN ASSIGNEMENT

Fig. 3: SPX431A Pin Assignement

ORDERING INFORMATION

Part Number	Temperature Range	Marking	Package	Packing Quantity	Note 1	Note 2
SPX431AM1-L/TR	-40°C≤T _A ≤+125°C		SOT89	2.5K/Tape & Reel	RoHS Compliant Lead Free	
SPX431AN-L/TR	-40°C≤T _A ≤+125°C		TO-92	2K/Tape & Reel	RoHS Compliant Lead Free	Ammo Pack

"YY" = Year - "WW" = Work Week - "X" = Lot Number

TYPICAL PERFORMANCE CHARACTERISTICS

All data taken at $T_A = 25$ °C, unless otherwise specified - Schematic and BOM from Application Information section of this datasheet.

Fig. 4: Cathode Current vs Cathode Voltage

Fig. 6: Low Current Operating Characteristics

Fig. 8: Δ Reference Voltage to Δ Cathode Voltage Ratio

Fig. 5: Reference Voltage vs Ambient Temperature

Fig. 7: Reference Input Current vs Ambient Temperature

Fig. 9: Test Circuit for Gain vs Frequency Responce

Fig. 10: Small Signal Gain vs Frequency

Fig. 11: Test Circuit for Pulse Response

R1 (10K)

R2

 I_{KA}

5

Fig. 14: Stability Boundary Conditions

© 2009 Exar Corporation

= 5\

=10

Fig. 15: Test Circuit for Dynamic Output Impedance

Fig. 16: Dynamic Output Impedance

Fig. 17: Off State Leakage

TYPICAL APPLICATION SCHEMATICS

Fig. 19: Constant Current Sink $I_{\text{SINK}}{=}V_{\text{REF}}/\text{R1}$

Fig. 21: Precision High Current Series Regulator $$V_{\text{OUT}}$=(1{+}R1/R2)V_{\text{REF}}$$

Fig. 23: Single Supply Comparator with Temperature Compensated Threshold

TEST CIRCUITS

TEST CIRCUIT 1

Test circuit for $V_{KA} = V_{REF}$

TEST CIRCUIT 2

Test circuit for V_{KA} > V_{REF}

TEST CIRCUIT 3

Test circuit for $I_{\mbox{\scriptsize KOFF}}$

PACKAGE SPECIFICATION

SOT-89

Unit: mm (inch)

TO-92

Unit: mm (inch)

REVISION HISTORY

Revision	Date	Description
2.0.0	04/15/09	Reformat of Datasheet Updated ordering part numbers Updated application and block diagram

FOR FURTHER ASSISTANCE

Email:

Exar Technical Documentation:

customersupport@exar.com http://www.exar.com/TechDoc/default.aspx?

EXAR CORPORATION

HEADQUARTERS AND SALES OFFICES 48720 Kato Road Fremont, CA 94538 – USA Tel.: +1 (510) 668-7000 Fax: +1 (510) 668-7030 www.exar.com

NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.