#### **ABSOLUTE MAXIMUM RATINGS**

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

| V <sub>DD</sub>        | 0.3V to +14.0V                         |
|------------------------|----------------------------------------|
| V <sub>STBY</sub>      | 0.3V to +14.0V<br>0.3V to +7.0V        |
|                        |                                        |
| Input Voltages         |                                        |
| TxINA                  | 0.3V to $(V_{STBY} + 0.3V)$            |
| TxINB                  | 0.3V to (V <sub>STBY</sub> + 0.3V)     |
|                        | ±15Ý                                   |
|                        | +15V                                   |
| Output Voltages        | _                                      |
| TxOUTA                 | ±15V                                   |
|                        | <u>+</u> 15V                           |
| RxOUTA,                | 0.3V to $(V_{STBY} + \overline{0.3V})$ |
| RxOUTB,                | 0.3V to (V <sub>STBY</sub> + 0.3V)     |
| Short-Circuit Duration | , SIBI ,                               |
| TxOUTA                 | Continuous                             |
|                        | Continuous                             |
|                        |                                        |
| Storage Temperature    | 65°C to +150°C                         |
|                        |                                        |

#### Power Dissipation per package

38-pin TSSOP (derate 914.3mW/°C above +70°C)......1200mW

# **ELECTRICAL CHARACTERISTICS**

Unless otherwise noted, the following specifications apply for  $V_{DD}$  = +12.0V +/-10%,  $V_{STBY}$  = +3.3V +/-5% or +5V +/-10%, C1 = C2 = 0.1µF, and  $T_{AMB}$  =  $T_{MIN}$  to  $T_{MAX}$ .

| PARAMETER                                 | MIN.     | TYP.    | MAX.  | UNITS | CONDITIONS                                                                      |
|-------------------------------------------|----------|---------|-------|-------|---------------------------------------------------------------------------------|
| DC CHARACTERISTICS                        |          |         |       |       |                                                                                 |
| Supply Current                            |          |         | 5     | mA    | no load, all driver inputs at 0.4V or 2.1V, All receiver inputs at +15V or -15V |
| Standby Supply Current, V <sub>STBY</sub> |          | 100     | 200   | μA    | no load, All driver inputs at $V_{\text{STBY}}$ or open                         |
| CMOS LOGIC INPUTS AND I                   | RECEIVER | ROUTPUT | S     |       |                                                                                 |
| Input Logic Threshold LOW                 |          |         | 0.4   | V     | T <sub>AMB</sub> = 25°C                                                         |
| Input Logic Threshold HIGH                | 2.1      |         |       | V     | T <sub>AMB</sub> = 25°C                                                         |
| Input Leakage Current                     |          | 10      | 25    | μA    | Driver input at 0V                                                              |
| Output Voltage LOW                        |          | 0.2     | 0.4   | V     | I <sub>OL</sub> = +1.6mA                                                        |
| Output Voltage HIGH                       | 2.4      |         |       | V     | I <sub>OH</sub> = -40μA                                                         |
| Output Leakage Current                    |          | +/-0.05 | +/-5  | μA    | Vdd = 0V, (except $R_5$ OUTA and $R_5$ OUTB)                                    |
| DRIVER OUTPUTS                            |          |         |       |       |                                                                                 |
| Output Voltage Swing                      | +/-5.0   | +/-9.0  |       | ٧     | all driver outputs loaded with $3k\Omega$ to GND                                |
| Output Resistance                         | 300      |         |       | Ω     | $V_{DD} = V_{STBY} = 0V, V_{OUT} = \pm 2V$                                      |
| Output Short-Circuit Current              | +/-5     | +/-15   | +/-30 | mA    | one driver output shorted, $V_{IN} = 0.8V$ , $V_{OUT} = 0V$                     |

Unless otherwise noted, the following specifications apply for  $V_{DD}$  = +12.0V +/-10%,  $V_{STBY}$  = +3.3V +/-5% or +5V +/-10%, C1 = C2 = 0.1µF, and  $T_{AMB}$  =  $T_{MIN}$  to  $T_{MAX}$ .

| PARAMETER                                                | MIN.            | TYP.  | MAX.  | UNITS | CONDITIONS                                                                                                                                                            |
|----------------------------------------------------------|-----------------|-------|-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RECEIVER INPUTS                                          | RECEIVER INPUTS |       |       |       |                                                                                                                                                                       |
| Input Voltage Range                                      | -15             |       | +15   | V     |                                                                                                                                                                       |
| Input Threshold LOW                                      | 0.4             | 1.45  |       | V     |                                                                                                                                                                       |
| Input Threshold HIGH                                     |                 | 1.7   | 2.4   | V     |                                                                                                                                                                       |
| Input Hysteresis                                         |                 | 0.25  |       | V     |                                                                                                                                                                       |
| Input Resistance                                         | 3               | 5     | 7     | kΩ    | V <sub>IN</sub> = +/-15V                                                                                                                                              |
| TIMING CHARACTERISTICS                                   |                 |       |       |       |                                                                                                                                                                       |
| Driver Maximum Data Rate                                 | 460             |       |       | kbps  | $R_L = 3k\Omega$ to $7k\Omega$ , $C_L = 50pF$ to 470pF                                                                                                                |
| Driver Maximum Data Rate                                 | 460             |       |       | kbps  | $R_L = 3k\Omega \text{ to } 7k\Omega, C_L = 50pF \text{ to}$<br>1000pF, $T_{AMB} = 0^{\circ}\text{C to } +85^{\circ}\text{C},$<br>$V_{STBY} = 5V + 10\% \text{ only}$ |
| Driver Maximum Data Rate                                 | 920             |       |       | kbps  | $R_L = 3k\Omega \text{ to } 7k\Omega, C_L = 50pF \text{ to}$<br>$470pF, V_{STBY} = 5V + /-5\%, V_{DD} =$<br>12V + 5%                                                  |
| Driver Propagation Delay, t <sub>PHL</sub>               |                 | 1.0   |       | μs    | $R_L = 3k\Omega$ , $C_L = 1000pF$ , refer to Figures 3 and 5                                                                                                          |
| Driver Propagation Delay, t <sub>PLH</sub>               |                 | 1.0   |       | μs    | $R_L = 3k\Omega$ , $C_L = 1000pF$ , refer to Figures 3 and 5                                                                                                          |
| Driver Transition-Region Slew Rate                       | 6               | 16    |       | V/µs  | $R_L$ = 3k $\Omega$ to 7k $\Omega$ , $C_L$ = 50pF to<br>470pF, measurements taken from<br>-3.0V to +3.0V or +3.0V to -3.0V                                            |
| Driver Transition-Region Slew Rate                       | 4               | 16    |       | V/µs  | $R_L$ = 3k $\Omega$ to 7k $\Omega$ , $C_L$ = 50pF to<br>1000pF, $V_{STBY}$ = 5V +/-10% only,<br>measurements taken from -3.0V<br>to +3.0V or +3.0V to -3.0V           |
| Receiver Maximum Data Rate                               | 460             |       |       | kbps  | C <sub>L</sub> = 150pF                                                                                                                                                |
| Receiver Maximum Data Rate                               | 920             |       |       | kbps  | $C_L = 150 pF, V_{STBY} = 5V + 5\% only$                                                                                                                              |
| Receiver Propagation Delay, t <sub>PHL</sub> (R1x - R4x) |                 | 0.4   | 0.75  | μs    | C <sub>L</sub> = 150pF, refer to Figures 4 and 6                                                                                                                      |
| Receiver Propagation Delay, $t_{\rm PLH}$ (R1x - R4x)    |                 | 0.4   | 0.75  | μs    | C <sub>L</sub> = 150pF, refer to Figures 4 and 6                                                                                                                      |
| Receiver Propagation Delay, $t_{PHL}$ (R5x)              |                 | 1.0   | 2.0   | μs    | C <sub>L</sub> = 150pF, refer to Figures 4 and 6                                                                                                                      |
| Receiver Propagation Delay, $t_{\rm PLH}$ (R5x)          |                 | 1.0   | 2.0   | μs    | C <sub>L</sub> = 150pF, refer to Figures 4 and 6                                                                                                                      |
| Receiver Output Rise Time                                |                 | 30    |       | ns    | refer to Figures 4 and 6                                                                                                                                              |
| Receiver Output Fall Time                                |                 | 30    |       | ns    | refer to Figures 4 and 6                                                                                                                                              |
| OPERATING CHARACTERISTICS                                |                 |       |       |       |                                                                                                                                                                       |
| Operating voltage Range, V <sub>DD</sub>                 | +10.8           | +12.0 | +13.2 | V     |                                                                                                                                                                       |
| Standby Voltage Range, V <sub>STBY</sub>                 | +3.15           |       | +5.5  | V     |                                                                                                                                                                       |
| Operating Temperature, T <sub>AMB</sub>                  | -40             |       | +85   | °C    |                                                                                                                                                                       |

# **PIN FUNCTION**

| NAME                | FUNCTION                                                                                                    | Pin Number |
|---------------------|-------------------------------------------------------------------------------------------------------------|------------|
| R₅OUTA              | +3.3V to +5V TTL/CMOS logic level receiver output for port A                                                | 1          |
| R₄OUTA              | +3.3V to +5V TTL/CMOS logic level receiver output for port A                                                | 2          |
| R₃OUTA              | +3.3V to +5V TTL/CMOS logic level receiver output for port A                                                | 3          |
| R <sub>2</sub> OUTA | +3.3V to +5V TTL/CMOS logic level receiver output for port A                                                | 4          |
| R₁OUTA              | +3.3V to +5V TTL/CMOS logic level receiver output for port A                                                | 5          |
| T <sub>3</sub> INA  | +3.3V to +5V TTL/CMOS logic level driver input for port A                                                   | 6          |
| T <sub>2</sub> INA  | +3.3V to +5V TTL/CMOS logic level driver input for port A                                                   | 7          |
| T <sub>1</sub> INA  | +3.3V to +5V TTL/CMOS logic level driver input for port A                                                   | 8          |
| STBY                | +3.3V to +5V standby power supply for receivers $\rm R_{\rm s}OUTA$ and $\rm R_{\rm s}OUTB$                 | 9          |
| V <sub>DD</sub>     | +12V Power Supply                                                                                           | 10         |
| C+                  | Positive terminal for the polarized C1 charge pump capacitor                                                | 11         |
| T₁INB               | +3.3V to +5V TTL/CMOS logic level driver input for port B                                                   | 12         |
| T <sub>2</sub> INB  | +3.3V to +5V TTL/CMOS logic level driver input for port B                                                   | 13         |
| T <sub>3</sub> INB  | +3.3V to +5V TTL/CMOS logic level driver input for port B                                                   | 14         |
| R₁OUTB              | +3.3V to +5V TTL/CMOS logic level receiver output for port B                                                | 15         |
| R <sub>2</sub> OUTB | +3.3V to +5V TTL/CMOS logic level receiver output for port B                                                | 16         |
| R₃OUTB              | +3.3V to +5V TTL/CMOS logic level receiver output for port B                                                | 17         |
| R₄OUTB              | +3.3V to +5V TTL/CMOS logic level receiver output for port B                                                | 18         |
| R₅OUTB              | +3.3V to +5V TTL/CMOS logic level receiver output for port B                                                | 19         |
| R₅INB               | RS-232 receiver input for port B                                                                            | 20         |
| R₄INB               | RS-232 receiver input for port B                                                                            | 21         |
| R₃INB               | RS-232 receiver input for port B                                                                            | 22         |
| R <sub>2</sub> INB  | RS-232 receiver input for port B                                                                            | 23         |
| R₁INB               | RS-232 receiver input for port B                                                                            | 24         |
| T₁OUTB              | RS-232 driver output for port B                                                                             | 25         |
| T <sub>2</sub> OUTB | RS-232 driver output for port B                                                                             | 26         |
| T <sub>3</sub> OUTB | RS-232 driver output for port B                                                                             | 27         |
| GND                 | Ground                                                                                                      | 28         |
| C-                  | Negative terminal for the polarized C1 charge pump capacitor                                                | 29         |
| V-                  | -12V output generated by the charge pump at the negative terminal of the polarized C2 charge pump capacitor | 30         |
| T₁OUTA              | RS-232 driver output for port A                                                                             | 31         |
| T <sub>2</sub> OUTA | RS-232 driver output for port A                                                                             | 32         |
| T <sub>3</sub> OUTA | RS-232 driver output for port A                                                                             | 33         |
| R₁INA               | RS-232 receiver input for port A                                                                            | 34         |
| R <sub>2</sub> INA  | RS-232 receiver input for port A                                                                            | 35         |
| R <sub>3</sub> INA  | RS-232 receiver input for port A                                                                            | 36         |
| R₄INA               | RS-232 receiver input for port A                                                                            | 37         |
| R₅INA               | RS-232 receiver input for port A                                                                            | 38         |

Table 1. Device Pin Description

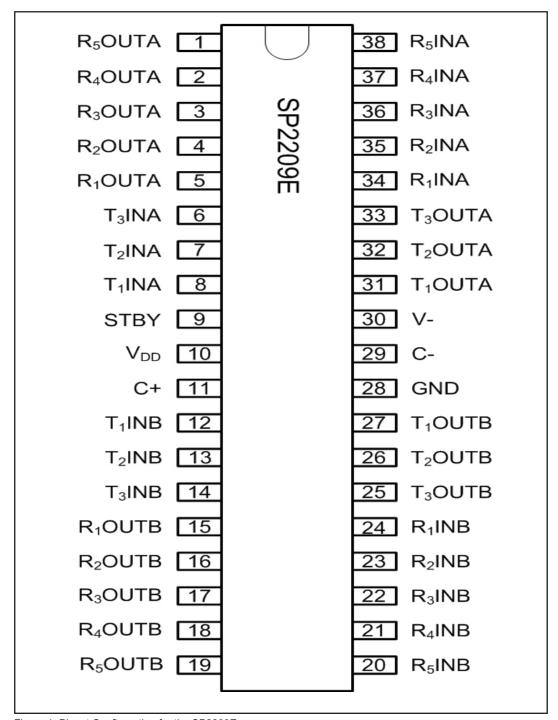



Figure 1. Pinout Configuration for the SP2209E

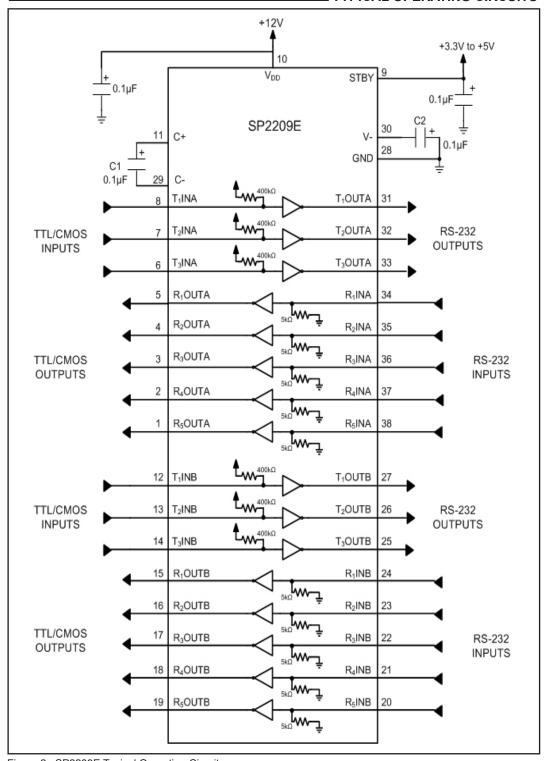



Figure 2. SP2209E Typical Operating Circuits

The **SP2209E** device is a rugged, high ESD, complete dual RS-232 port integrated onto a single integrated circuit. Six drivers and ten receivers provide a dual port solution fully meeting the EIA/TIA-232 and ITU-T V.28/V.24 communication protocols and can be implemented in applications such as personal desktop computers and workstations. Refer to Figure 2 for a typical operating circuit.

Features include high transmission rates, low power consumption, space saving package dimensions, and compatibility with the EU directive on electromagnetic compatibility. EM compatibility includes protection against radiated and conducted interference including high levels of electrostatic discharge. This device is ideal for operation in electrically harsh environments or where RS-232 cables are frequently being plugged and unplugged. This device is also immune to high RF field strengths without special shielding precautions. Emissions are also controlled to within very strict limits.

The **SP2209E** device features the inverter portion of Exar's proprietary and patented (U.S. 5,306,954) on-board charge pump circuitry that generates a -9V voltage level from a single +12V power supply. The SP2209E device can operate at data rates up to 460kbps fully loaded.

Its low power CMOS operation makes the SP2209E device an ideal choice for power sensitive designs. The SP2209E device has two receivers, one for each RS-232 port, that remains active in the standby mode to allow the monitoring of peripheral devices while the rest of the system is in a power-saving standby mode. This allows the SP2209E device to wake up the entire system when any communication is initiated in peripheral devices. The SP2209E device has a low standby current of 100mA.

#### THEORY OF OPERATION

The **SP2209E** device is made up of four basic circuit blocks:

- Drivers
- 2. Receivers
- 3. The Exar proprietary charge pump
- 4. Standby circuitry

#### **Drivers**

The drivers are inverting level transmitters that convert TTL or CMOS logic levels to EIA/TIA-232 levels with an inverted sense relative to the input logic levels. With  $V_{\rm DD}$  = +12V, the typical RS-232 output voltage swing is ±9V with no load and ±5V minimum fully loaded. Unused driver input may be left unconnected with an internal pull-up resistor pulling the inputs high forcing the driver outputs into a low state. The driver outputs are protected against infinite short-circuits to ground without degradation in reliability. These drivers comply with the EIA/TIA-232F and all other previous versions.

The drivers typically operate at a minimum data rate of 460kbps fully loaded with  $3k\Omega$  in parallel with 1000pF, ensuring compatibility with PC-to-PC communication software. The **SP2209E** device is ideal for the new generation modem standards which require data rates greater than 460kbps. Refer to Figures 3 and 5 for driver propagation delay test circuit and waveforms, respectively.

### Receivers

The Receivers convert EIA/TIA-232 levels to TTL or CMOS logic output levels. Should an input be left unconnected, an internal  $5k\Omega$  pulldown resistor to ground will commit the output of the receiver to a HIGH state. Receiver inputs are protected against overvoltages of up to +/-15V. Refer to Figures 4 and 6 for receiver propagation delay test circuits and waveforms, respectively.

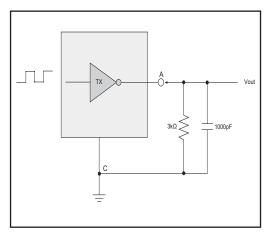



Figure 3. Driver Propagation Delay and Transition Time Test Circuit

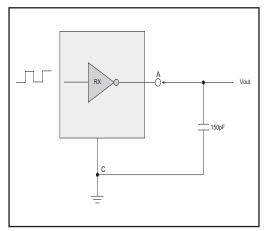



Figure 4 Receiver Propagation Delay and Transition Time Test Circuit

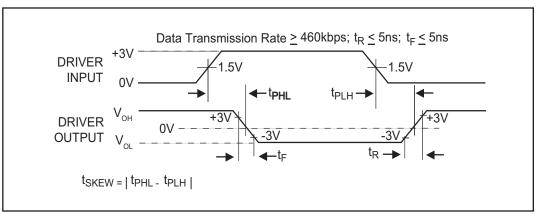



Figure 5. Driver Propagation Delay

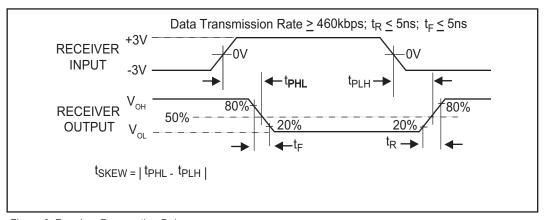



Figure 6. Receiver Propagation Delay

One receiver in each RS-232 port can be kept active by a low current, +3.3V to +5V power supply while the rest of the channels are powered down. This allows the **SP2209E** device to monitor peripheral devices while the rest of the system is in a power-saving standby mode. The **SP2209E** device can be implemented as a power management device to wake up the entire system when any communication is initiated in peripheral devices. The **SP2209E** device has a low standby current of  $100\mu A$ .

Since receiver input is usually from a transmission line where long cable lengths and system interference can degrade the signal, the inputs have a typical hysteresis margin of 300mV. This ensures that the receiver is virtually immune to noisy transmission lines and inputs with slow transition times.

## **Charge Pump**

The charge pump is an Exar-patended design (U.S. 5,306,954) and uses a unique approach compared to older less-efficient designs. The charge pump requires two external capacitors using a two-phase voltage shifting technique with a 200kHz internal oscillator to attain a -9V power supply. Refer to Figure 7 for the internal charge pump circuit. The internal power supply consists of a charge pump that provides output voltages of at least +/-5V regardless of the input voltage ( $V_{\rm DD}$ ). This is important to maintain compliant RS-232 levels regardless of power supply fluctuations. A description of each phase follows.

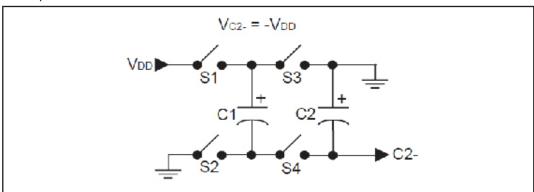



Figure 7. Charge Pump Circuit

#### Phase 1

—  $V_{DD}$  charge storage — S1 and S2 are closed. S3 and S4 are open. During this phase of the clock cycle, the positive side of  $C_1$  is connected to GND. The negative side of capacitor  $C_2$  is now 2 times  $V_{CC}$ .

#### Phase 2

—  $V_{\rm DD}$  transfer — S1 and S2 are closed. S3 and S4 are open. The negative side of capacitor  ${\rm C_2}$  is connected to  ${\rm C_2}$ -, The positive side of  ${\rm C_2}$  is connected to GND. This transfers a negative generated voltage to  ${\rm C_2}$ . A negative voltage is built up on the negative side of  ${\rm C_2}$  with each cycle of the oscillator. If the current drawn is small, the output voltage at  ${\rm C_2}$ - will be close to -Vdd. As the current drawn from  ${\rm C_2}$ - increases, the output voltage will decrease with magnitude. The charge pump cycle will continue as long as the operational conditions for the internal oscillator present. Refer to Figure 8 for the internal charge pump waveforms.

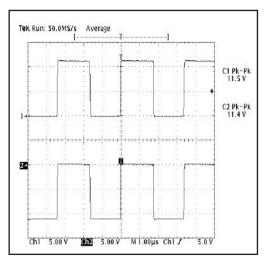



Figure 8. Charge Pump Waveforms

# **Standby Circuitry**

The **SP2209E** device incorporates power saving, on board standby circuitry. The standby current is typically less than 100μA. The **SP2209E** device automatically enters a standby mode when the V<sub>DD</sub> power supply is removed. An internal comparator generates an internal shutdown signal that disables the external oscillator disengaging the charge pump. Refer to Figure 9 for the internal standby detection circuit.

The inverted output V- goes to ground. All driver outputs are disabled. The inputs for receivers 1 through 4 for both ports A and B are at high impedance. Receiver 5 for both ports A and B remain fully active as power management receiver lines to system peripherals that may come online during the standby mode.

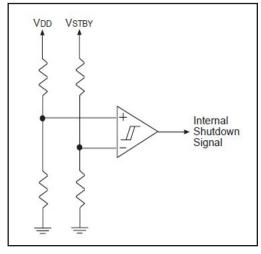


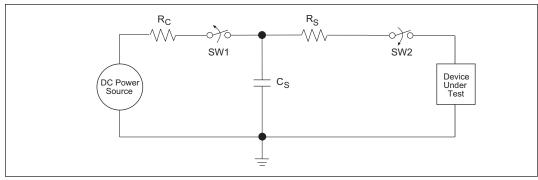

Figure 9 Internal Standby Detection Circuit

#### **ESD TOLERANCE**

The **SP2209E** device incorporates ruggedized ESD cells on all driver output and receiver input pins. The ESD structure is improved over our previous family for more rugged applications and environments sensitive to electro-static discharges and associated transients. The improved ESD tolerance is at least ±15kV without damage nor latch-up.

There are different methods of ESD testing applied:

a) MIL-STD-883, Method 3015.7 b) IEC 61000-4-2 Air-Discharge c) IEC 61000-4-2 Direct Contact


The Human Body Model has been the generally accepted ESD testing method for semi-conductors. This method is also specified in MIL-STD-883, Method 3015.7 for ESD testing. The premise of this ESD test is to simulate the human body's potential to store electro-static energy and discharge it to an integrated circuit. The simulation is performed by using a test model as shown in Figure 10. This method will test the IC's capability to withstand an ESD transient during normal handling such as in manufacturing areas where the IC's tend to be handled frequently.

The IEC-61000-4-2, formerly IEC801-2, is generally used for testing ESD on equipment and systems. For system manufacturers, they must guarantee a certain amount of ESD protection since the system itself is exposed to the outside environment and human presence. The premise with IEC

61000-4-2 is that the system is required to withstand an amount of static electricity when ESD is applied to points and surfaces of the equipment that are accessible to personnel during normal usage. The transceiver IC receives most of the ESD current when the ESD source is applied to the connector pins. The test circuit for IEC 61000-4-2 is shown on Figure 11. There are two methods within IEC 61000-4-2, the Air Discharge method and the Contact Discharge method.

With the Air Discharge Method, an ESD voltage is applied to the equipment under test (EUT) through air. This simulates an electrically charged person ready to connect a cable onto the rear of the system only to find an unpleasant zap just before the person touches the back panel. The high energy potential on the person discharges through an arcing path to the rear panel of the system before he or she even touches the system. This energy, whether discharged directly or through air, is predominantly a function of the discharge current rather than the discharge voltage. Variables with an air discharge such as approach speed of the object carrying the ESD potential to the system and humidity will tend to change the discharge current. For example, the rise time of the discharge current varies with the approach speed.

The Contact Discharge Method applies the ESD current directly to the EUT. This method was devised to reduce the unpredictability of the ESD arc. The discharge current rise time is constant since the energy is directly transferred without the air-gap arc. In situations such as hand held systems, the ESD charge can be directly discharged to the



11

Figure 10. ESD Test Circuit for Human Body Model

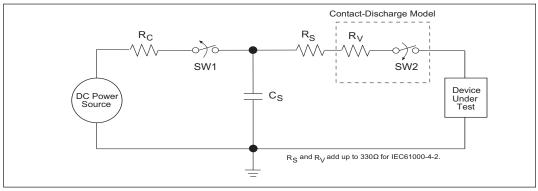



Figure 11. ESD Test Circuit for IEC61000-4-2

equipment from a person already holding the equipment. The current is transferred on to the keypad or the serial port of the equipment directly and then travels through the PCB and finally to the IC.

The circuit models in Figures 10 and 11 represent the typical ESD testing circuit used for all three methods. The  $\mathrm{C_s}$  is initially charged with the DC power supply when the first switch (SW1) is on. Now that the capacitor is charged, the second switch (SW2) is on while SW1 switches off. The voltage stored in the capacitor is then applied through  $\mathrm{R_s}$ , the current limiting resistor, onto the device under test (DUT). In ESD tests, the SW2 switch is pulsed so that the device under test receives a duration of voltage.

For the Human Body Model, the current limiting resistor ( $R_s$ ) and the source capacitor ( $C_s$ ) are 1.5k $\Omega$  an 100pF, respectively. For IEC-61000-4-2, the current limiting resistor ( $R_s$ ) and the source capacitor ( $C_s$ ) are 330 $\Omega$  an 150pF, respectively.

The higher  $C_s$  value and lower  $R_s$  value in the IEC61000-4-2 model are more stringent than the Human Body Model. The larger storage capacitor injects a higher voltage to the test point when SW2 is switched on. The lower current limiting resistor increases the current charge onto the test point.

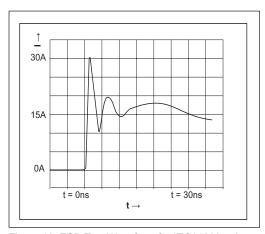



Figure 12. ESD Test Waveform for IEC61000-4-2

| DEVICE PIN<br>TESTED | HUMAN BODY<br>MODEL | Air Discharge | IEC61000-4-2<br>Direct Contact | Level |
|----------------------|---------------------|---------------|--------------------------------|-------|
| Driver Outputs       | <u>+</u> 15kV       | <u>+</u> 15kV | <u>+</u> 8kV                   | 4     |
| Receiver Inputs      | <u>+</u> 15kV       | <u>+</u> 15kV | <u>+</u> 8kV                   |       |

Table 2. Transceiver ESD Tolerance Levels

#### **APPLICATIONS**

With six drivers and ten receivers, the **SP2209E** device is ideal for applications requiring two RS-232 ports such as in desktop or portable computers. Refer to Figure 13. For typical DB9 serial ports for Data Terminal Equipment (DTE) to Data Circuit Terminating Equipment (DCE) interface implementation, 2 data lines, TxD and RxD, and 6 control lines, RTS. DTR, DSR, CTS, and RI, are required. The straight-through pinout for data lines in the SP2209E device allows a simplified PCB layout allowing ground lines to separate the signal lines and ground planes to be placed beneath the IC without the complication of a multi-layer PCB layout.

A receiver from each port, R5INA and R5INB, are active while the rest of the channels are powered down. This allows the **SP2209E** device to monitor peripheral devices while the rest of the system is in a power-saving standby mode. Failsafe receiver outputs are pulled high if the receiver inputs are left unconnected or at zero input. The **SP2209E** device can be implemented as a power management device to wake up the entire system when any communication is initiated in peripheral devices. The **SP2209E** device has a low standby current of 100µA.

A standard serial mouse can be powered from the **SP2209E** drivers. Two driver outputs connected in parallel and set to  $V_{OH}$  can be used to supply power to the V+pin of the mouse. The third driver is set to  $V_{OL}$  to link current from the V- terminal. Typical mouse specifications are 10mA at +6V and 5mA at -6V.

## **LapLink Compatibility**

The **SP2209E** can operate up to 460kbps data under maximum driveload conditions of  $C_L = 1000pF$  and  $R_L = 3k\Omega$  at minimum power supply voltages.

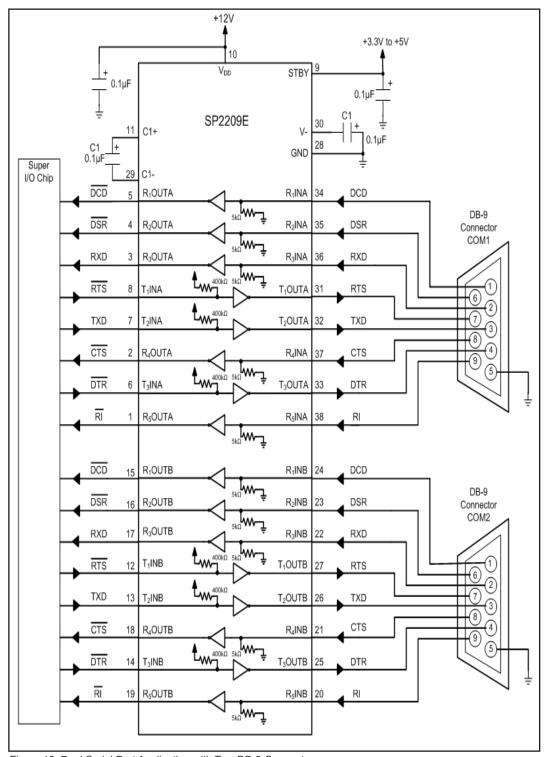
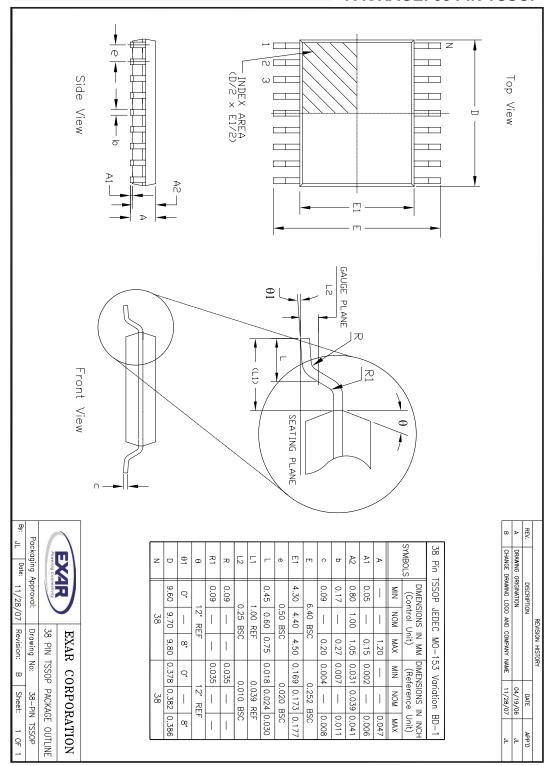




Figure 13. Dual Serial Port Application with Two DB-9 Connectors

# **PACKAGE: 38 PIN TSSOP**



# **ORDERING INFORMATION**

| Part Number    | Temp. Range    | Package      |
|----------------|----------------|--------------|
| SP2209EEY-L    | -40°C to +85°C | 38 Pin TSSOP |
| SP2209EEY-L/TR | -40°C to +85°C | 38 Pin TSSOP |

Note: "/TR" is for tape and Reel option. "-L" is for lead free packaging

# **REVISION HISTORY**

| DATE     | REVISION | DESCRIPTION                                                                                       |
|----------|----------|---------------------------------------------------------------------------------------------------|
| 2006     |          | Legacy Sipex Datasheet                                                                            |
| 07/16/12 | 1.0.0    | Convert to Exar Format and update ordering information. Change ESD specifications to IEC61000-4-2 |

#### Notice

EXAR Corporation reserves the right to make changes to any products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no representation that the circuits are free of patent infringement. Charts and schedules contained herein are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2012 EXAR Corporation

Datasheet July 2012

For technical questions please email Exar's Serial Technical Support group at: serialtechsupport@exar.com

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

SP2209E\_100\_071612