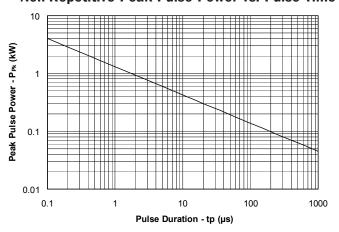
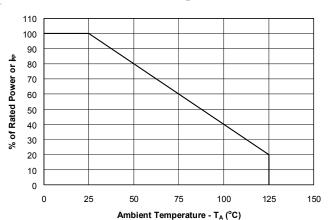


Absolute Maximum Rating

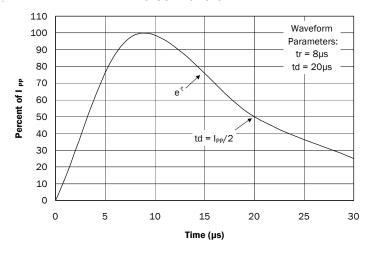
Rating	Symbol	Value	Units
Peak Pulse Power (tp = 8/20µs)	P_{pk}	300	Watts
Peak Pulse Current (tp = 8/20µs)	l _{PP}	12	А
ESD per IEC 61000-4-2 (Air) ESD per IEC 61000-4-2 (Contact)	V _{ESD}	15 8	kV
Operating Temperature	T,	-55 to +125	°C
Storage Temperature	T _{STG}	-55 to +150	°C

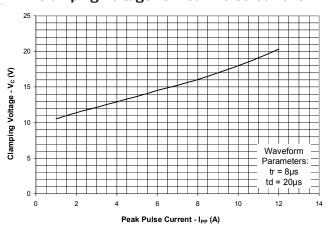

Electrical Characteristics (T = 25°C)

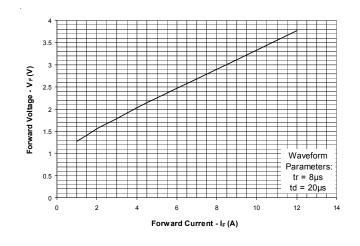
RClamp0504N								
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units		
Reverse Stand-Off Voltage	V _{RWM}	Pin 5 to 2			5	V		
Reverse Breakdown Voltage	V _{BR}	I _t = 1mA Pin 5 to 2	6			V		
Reverse Leakage Current	I _R	V _{RWM} = 5V, T=25°C Pin 5 to 2			5	μΑ		
Forward Voltage	V _F	I _f = 15mA			1.2	V		
Clamping Voltage	V _c	I _{pp} = 1A, tp = 8/20μs Any I/O pin to Ground			12.5	V		
Clamping Voltage	V _c	I _{pp} = 5A, tp = 8/20μs Any I/O pin to Ground			17.5	V		
Junction Capacitance C _j		V _R = 0V, f = 1MHz Any I/O pin to Ground		3	5	pF		
		V _R = 0V, f = 1MHz Between I/O pins		1.5		pF		

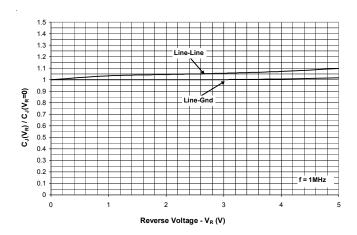


Typical Characteristics


Non-Repetitive Peak Pulse Power vs. Pulse Time

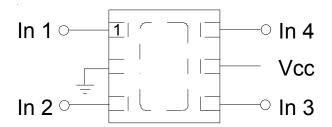

Power Derating Curve


Pulse Waveform


Clamping Voltage vs. Peak Pulse Current

Forward Voltage vs. Forward Current

Normalized Capacitance vs. Reverse Voltage



Applications Information

Device Connection Options for Protection of Four High-Speed Data Lines

This device is designed to protect four data lines from transient over-voltages by clamping them to a fixed reference. When the voltage on the protected line exceeds the reference voltage (plus diode $V_{\rm F}$) the steering diodes are forward biased, conducting the transient current away from the sensitive circuitry. Data lines are connected at pins 1, 3, 4 and 6. The negative reference is connected at pin 2. This pin should be connected directly to a ground plane on the board for best results. The path length is kept as short as possible to minimize parasitic inductance. The positive reference is connected at pin 5. The options for connecting the positive reference are as follows:

 To protect data lines and the power line, connect pin 5 directly to the positive supply rail (V_{CC}). In this configuration the data lines are referenced to the supply voltage. The internal TVS diode prevents over-voltage on the supply rail.

2. In applications where the supply rail does not exit the system, the internal TVS may be used as the reference. In this case, pin 5 is not connected. The steering diodes will begin to conduct when the voltage on the protected line exceeds the working voltage of the TVS (plus one diode drop).3.

ESD Protection With RailClamps®

RailClamps are optimized for ESD protection using the rail-to-rail topology. Along with good board layout, these devices virtually eliminate the disadvantages of using discrete components to implement this topology. Consider the situation shown in Figure 1 where discrete diodes or diode arrays are configured for rail-to-rail protection on a high speed line. During positive duration ESD events, the top diode will be forward biased when the voltage on the protected line exceeds the reference voltage plus the $V_{\rm F}$ drop of the diode. For negative events, the bottom diode will be biased when the voltage exceeds the $V_{\rm F}$ of the diode. At first approximation, the clamping voltage due to the characteristics of the protection diodes is given by:

$$V_{\rm C} = V_{\rm CC} + V_{\rm F}$$
 (for positive duration pulses) $V_{\rm C} = -V_{\rm F}$ (for negative duration pulses)

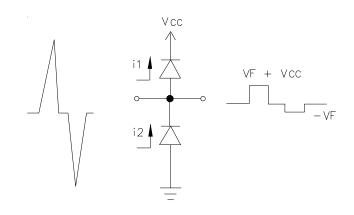


Figure 1 - "Rail-To-Rail" Protection Topology (First Approximation)

However, for fast rise time transient events, the effects of parasitic inductance must also be considered as shown in Figure 2. Therefore, the actual clamping voltage seen by the protected circuit will be:

$$\begin{array}{l} V_{_{C}} = V_{_{CC}} + V_{_{F}} + L_{_{P}} \, di_{_{ESD}} / dt & \text{(for positive duration pulses)} \\ V_{_{C}} = - V_{_{F}} - L_{_{G}} \, di_{_{ESD}} / dt & \text{(for negative duration pulses)} \end{array}$$

ESD current reaches a peak amplitude of 30A in 1ns for a level 4 ESD contact discharge per IEC 61000-4-2.

Applications Information (continued)

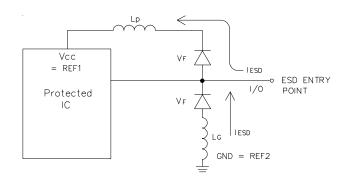


Figure 2 - The Effects of Parasitic Inductance When Using Discrete Components to Implement Rail-To-Rail Protection

Therefore, the voltage overshoot due to 1nH of series inductance is:

$$V = L_p di_{ESD}/dt = 1X10^{-9} (30 / 1X10^{-9}) = 30V$$

Example:

Consider a V_{cc} = 5V, a typical V_F of 30V (at 30A) for the steering diode and a series trace inductance of 10nH. The clamping voltage seen by the protected IC for a positive 8kV (30A) ESD pulse will be:

$$V_c = 5V + 30V + (10nH \times 30V/nH) = 335V$$

This does not take into account that the ESD current is directed into the supply rail, potentially damaging any components that are attached to that rail. Also note that it is not uncommon for the $V_{\rm F}$ of discrete diodes to exceed the damage threshold of the protected IC. This is due to the relatively small junction area of typical discrete components. It is also possible that the power dissipation capability of the discrete diode will be exceeded, thus destroying the device.

The RailClamp is designed to overcome the inherent disadvantages of using discrete signal diodes for ESD suppression. The RailClamp's integrated TVS diode helps to mitigate the effects of parasitic inductance in the power supply connection. During an ESD event, the current will be directed through the integrated TVS diode to ground. The maximum voltage seen by the protected IC due to this path will be the clamping voltage of the device.

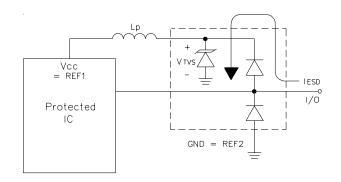
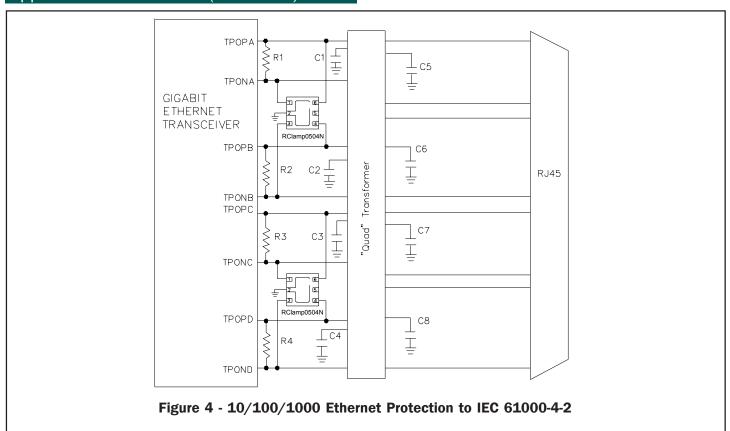
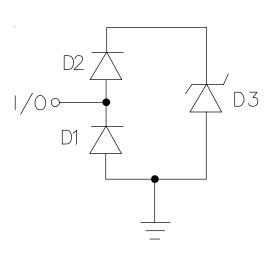


Figure 3 - Rail-To-Rail Protection Using RailClamp TVS Arrays


ETHERNET PROTECTION

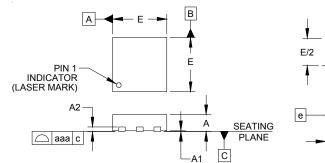
Ethernet ICs are vulnerable to damage from electrostatic discharge (ESD), lightning, and cable discharge events (CDE). The internal protection in the PHY chip, if any, often is not enough due to the high energy of these disturbances. The fatal discharge can occur differentially across the transmit or receive line pair or between any line and ground (common mode).

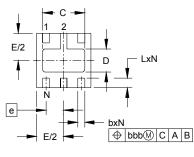
Common mode and differential mode protection against ESD and CDE discharges can be achieved by connecting the RClamp0504N on the PHY side of the Ethernet circuit as shown in Figure 4. Pins 1, 3, 4, and 6 are connected to the transmit and receive line pairs. Since there is no Vcc connection at the connector, pin 5 of the RClamp0504N should not be connected. Pin 2 is connected to ground. This connection should be made directly to the ground plane. All path lengths should be kept as short as possible to minimize parasitic inductance. This configuration can be used to meet the ESD immunity requirements of IEC 61000-4-2 and cable discharge events.



Applications Information (continued)

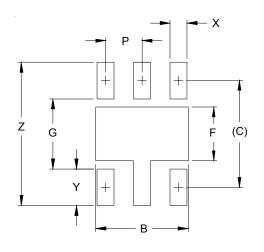
Applications Information - Spice Model




RClamp0504N Spice Model

RClamp0504N Spice Parameters							
Parameter	Unit	D1 (LCRD)	D2 (LCRD)	D3 (TVS)			
IS	Amp	1E-20	1E-20	8.57E-14			
BV	Volt	180	20	8			
VJ	Volt	0.63	0.59	0.66			
RS	Ohm	0.195	0.357	0.512			
IBV	Amp	1E-3	1E-3	1E-3			
C10	Farad	2E-12	2E-12	277E-12			
TT	sec	2.541E-9	2.541E-9	2.541E-9			
М		0.01	0.01	0.231			
N		1.1	1.1	1.1			
EG	eV	1.11	1.11	1.11			

Outline Drawing -SLP2020P6

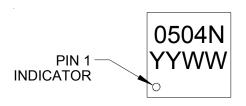


DIMENSIONS						
DIM	11	NCHE	S	MILLIMETERS		
ווווטן	MIN	NOM	MAX	MIN	NOM	MAX
Α	.020	.024	.026	0.50	0.60	0.65
A1	.000	.001	.002	0.00	0.03	0.05
A2		(.007)			(0.17)	
b	.007	.010	.012	0.20	0.25	0.30
С	.055	.061	.065	1.40	1.55	1.65
D	.028	.034	.038	0.71	0.86	0.96
E	.074	.079	.083	1.90	2.00	2.10
е	.0	25 BS	SC	0.	65 BS	C
L	.011	.014	.016	0.30	0.35	0.40
N	6			6		
aaa	.003			0.08		
bbb	.003			0.08		

NOTES:

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).
- 2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.

Land Pattern -SLP2020P6

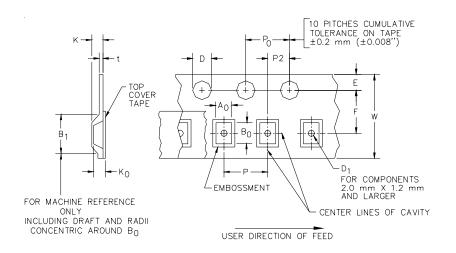

	DIMENSIONS						
DIM	INCHES	MILLIMETERS					
В	.065	1.65					
С	(.075)	(1.90)					
F	.034	0.86					
G	.049	1.25					
Р	.026	0.65					
Χ	.014	0.35					
Υ	.026	0.65					
Ζ	.100	2.55					

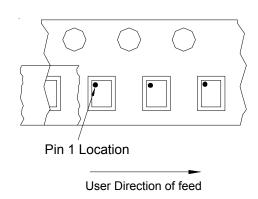
NOTES:

1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.

Marking Codes

Ordering Information


Part Number	Working	Qty per	Reel	
	Voltage	Reel	Size	
RClamp0504N.TCT	5V	3,000	7 Inch	


Notes:

1) This is a lead-free, RoHs compliant product RailClamp and RClamp are marks of Semtech Corporation

YYWW = Date Code (YY = Year, WW = Work Week)

Tape and Reel Specification

A0	во	ко
2.25 +/-0.10 mm	2.25 +/-0.10 mm	0.75 +/-0.10 mm

Device Orientation in Tape

Tape Width	B, (Max)	D	D1	E	F	K (MAX)	Р	PO	P2	T(MAX)	W
8 mm	4.2 mm (.165)	1.5 + 0.1 mm - 0.0 mm (0.59 +.005 000)	0.8 mm ±0.05 (.031)	1.750±.10 mm (.069±.004)	3.5±0.05 mm (.138±.002)	2.4 mm (.094)	4.0±0.1 mm (.157±.00- 4)	4.0±0.1 mm (.157±.00- 4)	2.0±0.05m- m (.079±.002)	0.4 mm (.016)	8.0 mm + 0.3 mm - 0.1 mm (.312±.012)

Contact Information for Semtech International AG

Taiwan Branch	Tel: 886-2-2748-3380 Fax: 886-2-2748-3390	Semtech Switzerland GmbH Japan Branch	Tel: 81-3-6408-0950 Fax: 81-3-6408-0951
Korea Branch	Tel: 82-2-527-4377 Fax: 82-2-527-4376	Semtech Limited (U.K.)	Tel: 44-1794-527-600 Fax: 44-1794-527-601
Shanghai Office	Tel: 86-21-6391-0830 Fax: 86-21-6391-0831	Semtech France SARL	Tel: 33-(0)169-28-22-00 Fax: 33-(0)169-28-12-98
Semtech International AG is a wholly-owned subsidiary of Semtech Corporation, which has its headquarters in the U.S.A.		Semtech Germany GmbH	Tel: 49-(0)8161-140-123 Fax: 49-(0)8161-140-124