Table 1. Electrical Specifications @ +25 °C ($Z_S = Z_L = 50\Omega$) unless otherwise noted Normal mode¹: $V_{DD} = 3.3V$, $V_{SS_EXT} = 0V$ or Bypass mode²: $V_{DD} = 3.3V$, $V_{SS_EXT} = -3.3V$ | Parameter | Path | Condition | Min | Тур | Max | Unit | |---|---------|--|----------------------------------|--|--|----------------------| | Operating frequency | | | 30 | | 6000 | MHz | | Insertion loss | RFC-RFX | 450 MHz
900 MHz
2100 MHz
2700 MHz
4000 MHz
6000 MHz | | 0.85
0.90
1.10
1.15
1.25
1.90 | 1.00
1.05
1.35
1.40
1.50
2.35 | dB
dB
dB
dB | | Isolation | RFC-RFX | 450 MHz
900 MHz
2100 MHz
2700 MHz
4000 MHz
6000 MHz | 62
55
52
50
42
27 | 67
61
55
52
43
32 | | dB
dB
dB
dB | | Isolation | RFX-RFX | 450 MHz
900 MHz
2100 MHz
2700 MHz
4000 MHz
6000 MHz | 61
56
51
50
41
29 | 65
61
54
52
44
32 | | dB
dB
dB
dB | | Return loss (active port) | RFX | 30–4000 MHz
4000–6000 MHz | | 17
12 | | dB
dB | | Return loss (terminated port) | RFX | 30–4000 MHz
4000–6000 MHz | | 22
19 | | dB
dB | | Input 0.1 dB compression point ³ | RFC-RFX | 900 MHz | | 35 | | dBm | | Input IP2 | RFC-RFX | 1900 MHz | | 97 | | dBm | | Input IP3 | RFC-RFX | 1900 MHz | | 58 | | dBm | | Switching time | | 50% control to 90% or 10% RF | | 255 | 330 | ns | Notes: 1. Normal mode: single external positive supply used. ^{2.} Bypass mode: both external positive supply and external negative supply used. ^{3.} The input 0.1 dB compression point is a linearity figure of merit. Refer to *Table 4* for the operating RF input power (50Ω). Table 2. Electrical Specifications @ +125 °C (Z_{S} = Z_{L} = 50 Ω) unless otherwise noted Normal mode¹: $V_{DD} = 3.3V$, $V_{SS_EXT} = 0V$ or Bypass mode²: $V_{DD} = 3.3V$, $V_{SS_EXT} = -3.3V$ | Parameter | Path | Condition | Min | Тур | Max | Unit | |---|---------|--|----------------------------------|--|--|----------------------------------| | Operating frequency | | | 30 | | 6000 | MHz | | Insertion loss | RFC-RFX | 450 MHz
900 MHz
2100 MHz
2700 MHz
4000 MHz
6000 MHz | | 1.11
1.18
1.43
1.50
1.59
2.28 | 1.38
1.45
1.79
1.95
2.04
2.91 | dB
dB
dB
dB
dB
dB | | Isolation | RFC-RFX | 450 MHz
900 MHz
2100 MHz
2700 MHz
4000 MHz
6000 MHz | 56
54
49
46
33
23 | 66
60
55
52
43
32 | | dB
dB
dB
dB
dB | | Isolation | RFX-RFX | 450 MHz
900 MHz
2100 MHz
2700 MHz
4000 MHz
6000 MHz | 59
54
50
49
39
26 | 65
61
53
52
43
32 | | dB
dB
dB
dB
dB | | Return loss (active port) | RFX | 30–4000 MHz
4000–6000 MHz | | 16
13 | | dB
dB | | Return loss (terminated port) | RFX | 30–4000 MHz
4000–6000 MHz | | 17
15 | | dB
dB | | Input 0.1 dB compression point ³ | RFC-RFX | 900 MHz | | 35 | | dBm | | Input IP2 | RFC-RFX | 1900 MHz | | 91 | | dBm | | Input IP3 | RFC-RFX | 1900 MHz | | 56 | | dBm | | Switching time | | 50% control to 90% or 10% RF | | 355 | 439 | ns | Notes: 1. Normal mode: single external positive supply used. Bypass mode: both external positive supply and external negative supply used. The input 0.1 dB compression point is a linearity figure of merit. Refer to *Table 4* for the operating RF input power (50Ω). Figure 3. Pin Configuration (Top View) Table 3. Pin Descriptions | Pin # | Name | Description | |---|----------------------------------|--| | 1-3, 4, 6, 7, 9,
10, 12, 13,
15, 21, 23, 24 | GND | Ground | | 5 | RF4 ¹ | RF port 4 | | 8 | RF3 ¹ | RF port 3 | | 11 | RF2 ¹ | RF port 2 | | 14 | RF1 ¹ | RF port 1 | | 16 | V_{DD} | Supply voltage | | 17 | V1 | Digital control logic input 1 | | 18 | V2 | Digital control logic input 2 | | 19 | V3 ² | Digital control logic input 3 | | 20 | V _{SS_EXT} ³ | External Vss negative voltage control/ground | | 22 | RFC ¹ | RF common | | Pad | GND | Exposed pad: Ground for proper operation | Notes: 1. RF pins 5, 8, 11, 14 and 22 must be at 0 VDC. The RF pins do not require DC blocking capacitors for proper operation if the 0 VDC requirement is met. - 2. Pin 19 must be grounded for 2-pin control, refer to Table 5A. - 3. Use V_{SS_EXT} (pin 20, refer to *Table 3*) to bypass and disable internal Exceeding absolute maximum ratings may cause permanent damage. Operation should be restricted to the limits in the Operating Ranges table. Operation between operating range maximum and absolute maximum for extended periods may reduce reliability. **Table 4. Operating Ranges** | Parameter | Symbol | Min | Тур | Max | Unit | | |--|----------------------------------|------|-----|------|------|--| | Normal mode ¹ | Normal mode ¹ | | | | | | | Supply voltage | V_{DD} | 2.3 | | 5.5 | V | | | Supply current | I _{DD} | | 110 | | μΑ | | | Bypass mode ² | | | | | | | | Supply voltage | V_{DD} | 2.7 | | 5.5 | V | | | Supply current | I _{DD} | | 50 | | μΑ | | | Negative supply voltage | V_{SS_EXT} | -3.6 | | -3.2 | ٧ | | | Normal or Bypass mod | le | | | | | | | Digital input high (V1, V2, V3) | V _{IH} | 1.17 | | 3.6 | V | | | Digital input low (V1, V2, V3) | V _{IL} | -0.3 | | 0.6 | V | | | Digital input current ³ | I _{CTRL} | | | 1 | μΑ | | | RF input power, CW | Р _{мах,сw}
+105 °С | | | 33 | dBm | | | RF input power, CW | Р _{мах,сw}
+125 °С | | | 28 | dBm | | | RF input power into terminated ports, CW | Р _{мах,тепм}
+105 °С | | | 24 | dBm | | | RF input power into terminated ports, CW | Р _{мах,тепм}
+125 °С | | | 20 | dBm | | | Operating temperature range | T _{OP} | -40 | | +125 | °C | | - Notes: 1. Normal mode: connect pin 20 to GND to enable internal negative voltage generator. - 2. Bypass mode: apply a negative voltage to V_{SS_EXT} (pin 20) to bypass and disable internal negative voltage generator. - 3. The pull-down resistor in the EVK schematic may increase control **Table 5. Absolute Maximum Ratings** | Parameter/Condition | Symbol | Min | Max | Unit | |---|---------------------------------|------|------------|----------| | Supply voltage | V_{DD} | -0.3 | 5.5 | ٧ | | Voltage on any DC input | Vı | -0.3 | 3.6 | ٧ | | Maximum input power | P _{MAX_ABS}
+105 °C | | 34 | dBm | | Maximum input power | P _{MAX_ABS}
+125 °C | | 28 | dBm | | Storage temperature range | T _{ST} | -65 | +150 | °C | | ESD voltage HBM¹
All pins
RF pins to ground | V _{ESD_HBM} | | 2.0
4.0 | kV
kV | | ESD voltage MM ² , all pins | V _{ESD_MM} | | 150 | ٧ | | ESD voltage CDM3, all pins | V_{ESD_CDM} | | 250 | ٧ | Notes: 1. Human Body Model (MIL_STD 883 Method 3015) 2. Machine Model (JEDEC JESD22-A115) ©2013-2021 pSemi Corporation All rights reserved. ## **Electrostatic Discharge (ESD) Precautions** When handling this UltraCMOS device, observe the same precautions that you would use with other ESD-sensitive devices. Although this device contains circuitry to protect it from damage due to ESD, precautions should be taken to avoid ## Latch-Up Avoidance Unlike conventional CMOS devices, UltraCMOS devices are immune to latch-up. ### Switching Frequency The PE42442 has a maximum 25 kHz switching rate in normal mode (pin 20 = GND). A faster switching rate is available in bypass mode (pin 20 = V_{SS EXT}). The rate at which the PE42442 can be switched is then limited to the switching time as specified in Table 1. Switching frequency describes the time duration between switching events. Switching time is the time duration between the point the control signal reaches 50% of the final value and the point the output signal reaches within 10% or 90% of its #### Moisture Sensitivity Level The Moisture Sensitivity Level rating for the PE42442 in the 24-lead 4 × 4 mm QFN package is MSL1. Table 6. Truth Table (3-pin control)* | | \ . | , | | |-------------|-----|----|----| | Mode | V3 | V2 | V1 | | Unsupported | 0 | 0 | 0 | | RF1 on | 0 | 0 | 1 | | RF2 on | 0 | 1 | 0 | | RF3 on | 0 | 1 | 1 | | RF4 on | 1 | 0 | 0 | | All off | 1 | 0 | 1 | | All off | 1 | 1 | 0 | | Unsupported | 1 | 1 | 1 | 3-pin control intended for legacy product support to PE42450 and PE42451 or if All Off mode is required. Logic States 000 and 111 are unsupported and should not be used under any operating conditions. Table 6A. Truth Table (2-pin control¹)² | Mode | V2 | V1 | |--------|----|----| | RF4 on | 0 | 0 | | RF1 on | 0 | 1 | | RF2 on | 1 | 0 | | RF3 on | 1 | 1 | 1. Pin 19 = V3 must be grounded. ## Optional External V_{SS} Control (V_{SS EXT}) For applications the require a faster switching rate or spur-free performance, this part can be operated in bypass mode. Bypass mode requires an external negative voltage in addition to an external V_{DD} supply voltage. As specified in *Table 3*, the external negative voltage (V_{SS EXT}) when applied to pin 20 will disable and bypass the internal negative voltage ### **Spurious Performance** The typical low-frequency spurious performance of the PE42442 in normal mode is -120 dBm (pin 20 = GND). If spur-free performance is desired, the internal negative voltage generator can be disabled by applying a negative voltage to $V_{SS EXT}$ (pin 20). ^{2. 2-}pin control is recommended for new product designs if All Off mode is not required. # Typical Performance Data @ 25 $^{\circ}$ C and V_{DD} = 3.3V unless otherwise noted ## Figure 4. Insertion Loss (All Paths) Figure 5. Insertion Loss vs Temp (RFC-RFX) Figure 6. Insertion Loss vs V_{DD} (RFC-RFX) ## Typical Performance Data @ 25 °C and V_{DD} = 3.3V unless otherwise noted Figure 7. Isolation vs Temp (RFC-RFX) Figure 8. Isolation vs V_{DD} (RFC-RFX) Figure 9. Isolation vs Temp (RFX-RFX) Figure 10. Isolation vs V_{DD} (RFX-RFX) ## Typical Performance Data @ 25 °C and V_{DD} = 3.3V unless otherwise noted Figure 11. Active Port Return Loss vs Temp Figure 12. Active Port Return Loss vs V_{DD} Figure 13. RFC Port Return Loss vs Temp Figure 14. RFC Port Return Loss vs V_{DD} Figure 15. Return Loss (All Ports Terminated) Figure 16. IIP3 vs Frequency ©2013-2021 pSemi Corporation All rights reserved. #### **Evaluation Kit** The SP4T switch Evaluation Board was designed to ease customer evaluation of pSemi's PE42442. The RF common port is connected through a 50Ω transmission line via the top SMA connector. RF1, RF2, RF3, and RF4 are connected through 50Ω transmission lines via side SMA connectors. A through 50Ω transmission is available via SMA connectors RFCAL1 and RFCAL2. This transmission line can be used to estimate the loss of the PCB over the environmental conditions being evaluated. The FVK board is constructed with four metal. layers on dielectric materials of Rogers 4003C and 4450 with a total thickness of 32 mils. Layer 1 and layer 3 provide ground for the 50Ω transmission lines. The 50Ω transmission lines are designed in layer 2 for high isolation purpose and use a stripline waveguide design with a trace width of 9.4 mils and trace metal thickness of 1.8 mils. The board stack up for 50Ω transmission lines has 8 mil thickness of Rogers 4003C between layer 1 and layer 2, and 10 mil thickness of Rogers 4450 between layer 2 and layer 3. Please consult manufacturer's guidelines for proper board material properties in your application. The PCB should be designed in such a way that RF transmission lines and sensitive DC I/O traces such as V_{SS EXT} are heavily isolated from one another, otherwise the true performance of the PE42442 will not be yielded. Figure 17. Evaluation Board Layout DOC-59282 ## Figure 18. Evaluation Board Schematic DOC-33427 # Figure 19. Package Drawing 24-lead 4 × 4 mm QFN Figure 20. Marking Specifications Figure 21. Tape and Reel Drawing NOTES: - 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 - 2. CAMBER IN COMPLIANCE WITH ETA 481 - POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE Device Orientation in Tape #### Table 7. Ordering Information | Ordering Code | Description | Package | Shipping Method | | |---------------|------------------------|----------------------------|-----------------|--| | PE42442A-Z | PE42442 SP4T RF switch | Green 24-lead 4 × 4 mm QFN | 3000 units/T&R | | | EK42442-01 | PE42442 Evaluation kit | Evaluation kit | 1/Box | | ### **Sales Contact and Information** ### For sales and contact information please visit www.psemi.com. Advance Information: The product is in a formative or design stage. The datasheet contains design target specifications for product development. Specifications and features may change in any manner without notice. Preliminary Specification: The datasheet contains preliminary data. Additional data may be added at a later date. pSemi reserves the right to change specifications at any time without notice in order to supply the best possible product. Product Specification: The datasheet contains final data. In the event pSemi decides to change the specifications, pSemi will notify customers of the intended changes by issuing a CNF (Customer Notification Form). The information in this document is believed to be reliable. However, pSemi assumes no liability for the use of this information. Use shall be entirely at the user's own risk. No patent rights or licenses to any circuits described in this document are implied or granted to any third party. pSemi's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the pSemi product could create a situation in which personal injury or death might occur. pSemi assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications. The Peregrine Semiconductor name, Peregrine Semiconductor logo and UltraCMOS are registered trademarks and the pSemi name, pSemi logo, HaRP and DuNE are trademarks of pSemi Corporation in the U.S. and other countries. pSemi products are protected under one or more of the following U.S. patents: patents.psemi.com. Document No. DOC-33414-8 | www.psemi.com ©2013-2021 pSemi Corporation All rights reserved.